Jawab:
integral tertentu
∫ f(x) dx = F(x) + C
ₐᵇ∫ f(x) dx = F(b) - F(a)
Penjelasan dengan langkah-langkah:
i) ₋₁²∫ (3x² + 2x + 1) dx=
= [x³ + x² + x ]²₋₁
= { 2³- (-1)³} + {2² - (-1)² } + (2 - (-1))
= (8 + 1) + (4 -1) + (2 +1)
= 9 + 3 + 3
= 18
...
ii) ₀²∫ (x² -2x + 1) dx =
= [1/3 x³ - x² + x ]²₀
= 1/3 (2³ -0³) - (2² -0) + (2-0)
= 1/3 (8 - 0) - (4 - 0) + (2 -0)
= 1/3 (8) - 4 + 2
= 8/3 - 2
= 8/3 - 6/3
= 2/3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawab:
integral tertentu
∫ f(x) dx = F(x) + C
ₐᵇ∫ f(x) dx = F(b) - F(a)
Penjelasan dengan langkah-langkah:
i) ₋₁²∫ (3x² + 2x + 1) dx=
= [x³ + x² + x ]²₋₁
= { 2³- (-1)³} + {2² - (-1)² } + (2 - (-1))
= (8 + 1) + (4 -1) + (2 +1)
= 9 + 3 + 3
= 18
...
ii) ₀²∫ (x² -2x + 1) dx =
= [1/3 x³ - x² + x ]²₀
= 1/3 (2³ -0³) - (2² -0) + (2-0)
= 1/3 (8 - 0) - (4 - 0) + (2 -0)
= 1/3 (8) - 4 + 2
= 8/3 - 2
= 8/3 - 6/3
= 2/3