Jawab:
integral tertentu
jika ∫ f(x) dx = F(x)
maka ₐᵇ∫ f(x) dx = F(b) - F(a)
Penjelasan dengan langkah-langkah:
no. 9
₋₃²∫ (3x² + 6x + 8) dx =
= [ x³+ 3x² + 8x]²₋₃
= { (2³- (-3)³} + 3 {2² -(-3)²} + 8 { 2 - (-3)}
= (8 + 27) + 3 (4- 9) + 8 (2 +3)
= (35 + 3 (-5) + 8(5)
= 35 - 15 + 40
= 60
.
11) ₋₂²∫ (3x² - 4x + 5 ) dx
= [ x³ - 2x²+ 5x ]²₋₂
= { (2³ -(-2)³) - 2 (2² -(-2)²) + 5 (2 - (-2))
= (8+8) - 2 (4 -4) + 5 (2+2)
= 16 - 2(0) + 5 (4)
= 16 - 0 + 20
= 36
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawab:
integral tertentu
jika ∫ f(x) dx = F(x)
maka ₐᵇ∫ f(x) dx = F(b) - F(a)
Penjelasan dengan langkah-langkah:
no. 9
₋₃²∫ (3x² + 6x + 8) dx =
= [ x³+ 3x² + 8x]²₋₃
= { (2³- (-3)³} + 3 {2² -(-3)²} + 8 { 2 - (-3)}
= (8 + 27) + 3 (4- 9) + 8 (2 +3)
= (35 + 3 (-5) + 8(5)
= 35 - 15 + 40
= 60
.
11) ₋₂²∫ (3x² - 4x + 5 ) dx
= [ x³ - 2x²+ 5x ]²₋₂
= { (2³ -(-2)³) - 2 (2² -(-2)²) + 5 (2 - (-2))
= (8+8) - 2 (4 -4) + 5 (2+2)
= 16 - 2(0) + 5 (4)
= 16 - 0 + 20
= 36