`15 (1 + cot² B)/ (cot B sec² B) = cot B ruas kliri (1 + cot² B)/ (cot B sec² B) = = csc² B/ { cot B sec² B) = ( 1/sin² B) / ( cos B/sin B . 1/(cos² B)} = (1/sin² B ) ( 1/ sin B . cos B) = (1/ sin² B) (sin B cos B) = (cos B)/(sin B) = cot B
16 sin⁴ a (cot⁴ a -1) = 2 cos² a - 1 ruas kiri sin⁴a (cot⁴a - 1) = = sin⁴ a ( cos⁴ a/sin⁴ a - 1) = cos⁴ a - sin⁴ a = (cos² a + sin² a)(cos² a - sin² a) = 1 (cos² a - sin² a) = cos² a - (1 - cos² a) = 2 cos² a - 1
17. (tan a - 1)/(tan a +1). (sin a + cos a)/(sin a - cos a) = 1 ruas kiri (tan a -1)/(tan a +1). (sin a + cos a)/(sin a - cos a)= .. tan a - 1 = (sin a/cos a -1)= (sin a - cos a)/cos a tan a + 1 = (sin a /cos a +1) = (sin a + cos a )/ cos a tan a - 1/ tan a+1 = (sin a - cos a )/(sin a + cos a) . {(tan a -1)/(tan a +1)} {(sin a + cos a)/(sin a - cos a)}= = {(sin a - cos a)/ (sin a + cos a)}{sin a + cos a)/(sin a - cos a)} = (sin a -cos a)(sin a + cos a)/ (sin a +cos a)(sin a - cos a) = 1.
Verified answer
`15(1 + cot² B)/ (cot B sec² B) = cot B
ruas kliri
(1 + cot² B)/ (cot B sec² B) =
= csc² B/ { cot B sec² B)
= ( 1/sin² B) / ( cos B/sin B . 1/(cos² B)}
= (1/sin² B ) ( 1/ sin B . cos B)
= (1/ sin² B) (sin B cos B)
= (cos B)/(sin B)
= cot B
16
sin⁴ a (cot⁴ a -1) = 2 cos² a - 1
ruas kiri
sin⁴a (cot⁴a - 1) =
= sin⁴ a ( cos⁴ a/sin⁴ a - 1)
= cos⁴ a - sin⁴ a
= (cos² a + sin² a)(cos² a - sin² a)
= 1 (cos² a - sin² a)
= cos² a - (1 - cos² a)
= 2 cos² a - 1
17.
(tan a - 1)/(tan a +1). (sin a + cos a)/(sin a - cos a) = 1
ruas kiri
(tan a -1)/(tan a +1). (sin a + cos a)/(sin a - cos a)=
..
tan a - 1 = (sin a/cos a -1)= (sin a - cos a)/cos a
tan a + 1 = (sin a /cos a +1) = (sin a + cos a )/ cos a
tan a - 1/ tan a+1 = (sin a - cos a )/(sin a + cos a)
.
{(tan a -1)/(tan a +1)} {(sin a + cos a)/(sin a - cos a)}=
= {(sin a - cos a)/ (sin a + cos a)}{sin a + cos a)/(sin a - cos a)}
= (sin a -cos a)(sin a + cos a)/ (sin a +cos a)(sin a - cos a)
= 1.
Verified answer
Kelas : XIPelajaran : Matematika
Kategori : Pembuktian Identitas Trigonometri
Pembahasan pada gambar terlampir