3x²+2x+5 = 0 => akar2 nya x1 dan x2
ax²+bx+c = 0 => akar2 nya α = x1+1 , β = x2+1
o 3x²+2x+5 = 0
x1 + x2 = -2/3
x1.x2 = 5/3
o ax²+bx+c = 0
α+β = x1+1 + x2+1
= x1+x2+2 <= x1+x2 = -2/3
= -2/3 + 2
= 4/3
α.β = (x1+1)(x2+1)
= x1.x2 + 2(x1+x2) + 1 <= x1.x2 = 5/3 , x1+x2 = -2/3
= 5/3 + 2.(-2/3) + 1
= 5/3 - 4/3 + 1
= 1/3 + 1
αβ = 4/3
rumus PKB :
x² - (α+β)x + (α.β) = 0 <= α+β = αβ = 4/3
x² - 4/3 x + 4/3 = 0 <= kali 3 semua
3x² - 4x + 4 = 0 <= a = 3 , b = -4 , c = 4
2a+b+c = 2(3) - 4 + 4
= 6
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
3x²+2x+5 = 0 => akar2 nya x1 dan x2
ax²+bx+c = 0 => akar2 nya α = x1+1 , β = x2+1
o 3x²+2x+5 = 0
x1 + x2 = -2/3
x1.x2 = 5/3
o ax²+bx+c = 0
α+β = x1+1 + x2+1
= x1+x2+2 <= x1+x2 = -2/3
= -2/3 + 2
= 4/3
α.β = (x1+1)(x2+1)
= x1.x2 + 2(x1+x2) + 1 <= x1.x2 = 5/3 , x1+x2 = -2/3
= 5/3 + 2.(-2/3) + 1
= 5/3 - 4/3 + 1
= 1/3 + 1
αβ = 4/3
rumus PKB :
x² - (α+β)x + (α.β) = 0 <= α+β = αβ = 4/3
x² - 4/3 x + 4/3 = 0 <= kali 3 semua
3x² - 4x + 4 = 0 <= a = 3 , b = -4 , c = 4
2a+b+c = 2(3) - 4 + 4
= 6