18) 1/(sec x - tan x) = 1/(1/(cos x) - (sin x)/(cos x)) = 1/[(1 - sin x)/(cos x)] = (cos x) / (1 - sin x) = (cos x)/(1 - sin x) . (1 + sin x)/(1 + sin x) = cos x (1 + sin x) / (1 - sin^2 x) = cos x (1 + sin x) / (cos^2 x) = (1 + sin x) / (cos x) = 1/(cos x) + (sin x)/(cos x) = sec x + tan x
19) (sin^2 a - sin^2 b)/(cos^2 a cos^2 b) = (sin^2 a)/(cos^2 a cos^2 b) - (sin^2 b)/(cos^2 a cos^2 b) = (sin^2 a)/(cos^2 a) . 1/(cos^2 b) - (sin^2 b)/(cos^2 b) . 1/(cos^2 b) = tan^2 a . sec^2 b - tan^2 b . sec^2 a = tan^2 a (1 + tan^2 b) - tan^2 b (1 + tan^2 a) = tan^2 a + tan^2 a tan^2 b - tan^2 b - tan^2 a tan^2 b = tan^2 a - tan^2 b
Verified answer
18) 1/(sec x - tan x)= 1/(1/(cos x) - (sin x)/(cos x))
= 1/[(1 - sin x)/(cos x)]
= (cos x) / (1 - sin x)
= (cos x)/(1 - sin x) . (1 + sin x)/(1 + sin x)
= cos x (1 + sin x) / (1 - sin^2 x)
= cos x (1 + sin x) / (cos^2 x)
= (1 + sin x) / (cos x)
= 1/(cos x) + (sin x)/(cos x)
= sec x + tan x
19) (sin^2 a - sin^2 b)/(cos^2 a cos^2 b)
= (sin^2 a)/(cos^2 a cos^2 b) - (sin^2 b)/(cos^2 a cos^2 b)
= (sin^2 a)/(cos^2 a) . 1/(cos^2 b) - (sin^2 b)/(cos^2 b) . 1/(cos^2 b)
= tan^2 a . sec^2 b - tan^2 b . sec^2 a
= tan^2 a (1 + tan^2 b) - tan^2 b (1 + tan^2 a)
= tan^2 a + tan^2 a tan^2 b - tan^2 b - tan^2 a tan^2 b
= tan^2 a - tan^2 b
^ = pangkat
Verified answer
Kelas : XIPelajaran : Matematika
Kategori : Pembuktian Identitas
Pembahasan pada gambar terlampir