Jawab:
turunan
Penjelasan dengan langkah-langkah:
f(x)= x² + 1 → f'(x) = 2x
g(x)= x² → g'(x) = 2x
a) h(x) = [ f(x) ]²
h'(x) = 2. f(x) . f'(x)
h'(x) = 2 (x² + 1) . (2x) = (2x² +2)(2x)
h'(x) = 4x³ + 4x
b) h(x) = log( f(x))
h ' (x) = f'(x)/ f(x) = (2x) / (x² +1)
c) h(x) = f(x) /g(x)
h'(x) = ( f' g - f g' )/( g²)
h '(x) = { (2x)(x²) - (x² +1). (2x) } /( x²)²
h'(x) = { 2x³ - 2x³ - 2x } / ( x⁴)
h'(x) = ( -2x ) / (x⁴)
h'(x) = - 2/ x³
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Jawab:
turunan
Penjelasan dengan langkah-langkah:
f(x)= x² + 1 → f'(x) = 2x
g(x)= x² → g'(x) = 2x
a) h(x) = [ f(x) ]²
h'(x) = 2. f(x) . f'(x)
h'(x) = 2 (x² + 1) . (2x) = (2x² +2)(2x)
h'(x) = 4x³ + 4x
b) h(x) = log( f(x))
h ' (x) = f'(x)/ f(x) = (2x) / (x² +1)
c) h(x) = f(x) /g(x)
h'(x) = ( f' g - f g' )/( g²)
h '(x) = { (2x)(x²) - (x² +1). (2x) } /( x²)²
h'(x) = { 2x³ - 2x³ - 2x } / ( x⁴)
h'(x) = ( -2x ) / (x⁴)
h'(x) = - 2/ x³