₀∫⁹⁰ (cos x)/(1 + sin² x) dx
misal
u = sin x
du/dx = cos x
dx = du/cos x
∫ (cos x)/(1 + u²) . du/(cos x)
= ∫ 1/(1 + u²) du
Misal
u = tan θ
du/dθ = sec² θ
du = sec² θ dθ
tan θ = u
θ = arc tan u
∫ 1/(1 + u²) du
= ∫ 1/(1 + tan² θ) . sec² θ dθ
= ∫ 1/(sec² θ) . sec² θ dθ
= ∫ 1 dθ
= θ + C
= arc tan u + C
= arc tan (sin x) + C
Jadi
= arc tan (sin x) ₀|⁹⁰
= arc tan (sin π/2) - arc tan (sin 0)
= arc tan (1) - arc tan 0
= π/4 - 0
= π/4
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
₀∫⁹⁰ (cos x)/(1 + sin² x) dx
misal
u = sin x
du/dx = cos x
dx = du/cos x
∫ (cos x)/(1 + u²) . du/(cos x)
= ∫ 1/(1 + u²) du
Misal
u = tan θ
du/dθ = sec² θ
du = sec² θ dθ
tan θ = u
θ = arc tan u
∫ 1/(1 + u²) du
= ∫ 1/(1 + tan² θ) . sec² θ dθ
= ∫ 1/(sec² θ) . sec² θ dθ
= ∫ 1 dθ
= θ + C
= arc tan u + C
= arc tan (sin x) + C
Jadi
₀∫⁹⁰ (cos x)/(1 + sin² x) dx
= arc tan (sin x) ₀|⁹⁰
= arc tan (sin π/2) - arc tan (sin 0)
= arc tan (1) - arc tan 0
= π/4 - 0
= π/4