Integral Trigonometri
∫ sin x dx = - cos x + C
∫ cos x dx = sin x + C
∫ sec² x dx = tan x + C
∫ cosec² x dx = - cot x + C
∫ sec x tan x dx = sec x + C
∫ cosec x cot x dx = - cosec x + C
Identitas Trigonometri
sin² x + cos² x = 1
tan² x + 1 = sec² x
cot² x + 1 = cosec² x
=
= tan x - cot x
= (tan π - cot π) - (tan 0 - cot 0)
= (0 - cot π) - (0 - cot 0)
= - cot π + cot 0
= 0
karena cot π = cot 0
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Integral Trigonometri
∫ sin x dx = - cos x + C
∫ cos x dx = sin x + C
∫ sec² x dx = tan x + C
∫ cosec² x dx = - cot x + C
∫ sec x tan x dx = sec x + C
∫ cosec x cot x dx = - cosec x + C
Identitas Trigonometri
sin² x + cos² x = 1
tan² x + 1 = sec² x
cot² x + 1 = cosec² x
=
=
=
=
=
= tan x - cot x
= (tan π - cot π) - (tan 0 - cot 0)
= (0 - cot π) - (0 - cot 0)
= - cot π + cot 0
= 0
karena cot π = cot 0