Penjelasan dengan langkah-langkah:
no. 17
Ingat !
f(x) = (ax + b)/(cx + d)
f'(x) = (ad - bc)/(cx + d)²
maka :
f(x) = (x - 36)/(x + 6)
f'(x) = (1 . 6 - (-36) . 1)/(x + 6)²
f'(x) = (6 + 36)/(x + 6)²
f'(x) = 42/(x + 6)²
Tentukan nilai dari f(0) + 6f'(0) !
Jawab :
f(0) = (0 - 36)/(0 + 6) = -36/6 = -6
f'(0) = 42/(0 + 6)² = 42/36 = 7/6
Maka, nilai dari f(0) + 6f'(0) adalah 1
f(0) + 6f'(0)
= -6 + 6(7/6)
= -6 + 7
= 1
no. 18
f(x) = (√(x + 1))/x
• u = (x + 1)^½ dan u' = ½ / √(x + 1)
• v = x dan v' = 1
f(x) = u/v
f'(x) = (u' . v - u . v')/v²
f'(x) = ((½/√(x + 1) . x) - (√(x + 1) . 1)/x²
f'(x) = (x / 2√(x + 1) - √(x + 1))/x²
f'(3) = (3 / 2√(3 + 1) - √(3 + 1))/3²
f'(3) = (¾ - 2)/9
f'(3) = -5/4 × 1/9
f'(3) = -5/36
Semoga Bermanfaat
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
no. 17
Ingat !
f(x) = (ax + b)/(cx + d)
f'(x) = (ad - bc)/(cx + d)²
maka :
f(x) = (x - 36)/(x + 6)
f'(x) = (1 . 6 - (-36) . 1)/(x + 6)²
f'(x) = (6 + 36)/(x + 6)²
f'(x) = 42/(x + 6)²
Tentukan nilai dari f(0) + 6f'(0) !
Jawab :
f(0) = (0 - 36)/(0 + 6) = -36/6 = -6
f'(0) = 42/(0 + 6)² = 42/36 = 7/6
Maka, nilai dari f(0) + 6f'(0) adalah 1
f(0) + 6f'(0)
= -6 + 6(7/6)
= -6 + 7
= 1
no. 18
f(x) = (√(x + 1))/x
• u = (x + 1)^½ dan u' = ½ / √(x + 1)
• v = x dan v' = 1
maka :
f(x) = u/v
f'(x) = (u' . v - u . v')/v²
f'(x) = ((½/√(x + 1) . x) - (√(x + 1) . 1)/x²
f'(x) = (x / 2√(x + 1) - √(x + 1))/x²
f'(3) = (3 / 2√(3 + 1) - √(3 + 1))/3²
f'(3) = (¾ - 2)/9
f'(3) = -5/4 × 1/9
f'(3) = -5/36
Semoga Bermanfaat