" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
= lim(x→4) tan (√x+1)(√x-2)/(√x-2)(√x+2)
= (tan (√x+1))/(√x+2) . (tan (√x-2))/(√x-2)
= (√x+1)/(√x+2) . 1
= (√4+1)/(√4+2)
= 3/4
2. f(x) = 2x³ - 4x² + 16
f'(c) = lim(h→0) (f(c+h)-f(c))/h
= lim(h→0) ((2(c+h)³ - 4(c+h)² + 16) - (2c³ - 4c² + 16))/h
= lim(h→0) (2h(3c²+3ch-4c+h²-2h))/h
= lim(h→0) 2.(3c²+3ch-4c+h²-2h) ; c = 5
= 2.(3c²+3c(0)-4c+(0)²-2(0))
= 6c² - 8c
f'(5) = 6(5²) - 8(5)
= 150 - 40
= 110
4. f(x) = (1+cos x)/(xsin x)
f(x) = (sin² (x/2)+cos² (x/2)+cos² (x/2)-sin² (x/2))/(x.(2.sin (x/2)cos (x/2))
f(x) = (2.cos² (x/2))/(x.(2.sin (x/2)cos (x/2))
f(x) = cos (x/2))/(x.sin (x/2)
f'(x) =((xsin(x/2))(-(1/2)sin(x/2))-((1/2)xcos(x/2)+sin(x/2))co (x/2))/(xsin (x/2))²
f'(x) = (-(1/2)x.sin² (x/2)-(1/2)x.cos² (x/2)-sin (x/2).cos (x/2))/(x.sin (x/2))²
f'(x) = (-(1/2)x - (1/2)sin x)/(x.sin (x/2))²
f'(x) = -(x+sin x)/(2x².sin² (x/2)
f'(x) = -((x+sin x).cosec² (x/2))/2x²