Tentungan
f(x) + g(x)
f(x) * g(x)
f(x) ÷ g(x)
1. f(x) = x + 8 dan g(x) = x² - 2x + 1
f(x) + g(x) = x + 8 + x² - 2x + 1 = x² - x + 9
f(x) * g(x) = (x + 8) (x² - 2x + 1) = x³ - 2x² + x + 8x² - 16x + 8 = x³ + 6x² - 15x + 8
f(x) ÷ g(x) = (x + 8) / (x² - 2x + 1)
2. f(x) = x² + 2x - 24 dan g(x) = x² + 7x + 6
f(x) + g(x) = x² + 2x - 24 + x² + 7x + 6 = 2x² + 9x - 18
f(x) * g(x) = ( x² + 2x - 24) (x² + 7x + 6) = x^4 + 7x³ + 6x² + 2x³ + 14x² + 12x - 24x² - 168x - 144 = x^4 + 9x³ - 4x² - 156x - 144
f(x) ÷ g(x) = (x² + 2x - 24) ÷ (x² + 7x + 6) = (x + 6) (x - 4) ÷ (x + 6) (x + 1) = (x - 4) / (x + 1)
Materi Fungsi : brainly.co.id/tugas/1386195
Kelas : 10 SMA
Mapel : Matematika
Bab : Fungsi
Kode : 10.2.3
Kata kunci : fungsi, penjumlahan fungsi, aljabar
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Tentungan
f(x) + g(x)
f(x) * g(x)
f(x) ÷ g(x)
Pembahasan
1. f(x) = x + 8 dan g(x) = x² - 2x + 1
f(x) + g(x) = x + 8 + x² - 2x + 1 = x² - x + 9
f(x) * g(x) = (x + 8) (x² - 2x + 1) = x³ - 2x² + x + 8x² - 16x + 8 = x³ + 6x² - 15x + 8
f(x) ÷ g(x) = (x + 8) / (x² - 2x + 1)
2. f(x) = x² + 2x - 24 dan g(x) = x² + 7x + 6
f(x) + g(x) = x² + 2x - 24 + x² + 7x + 6 = 2x² + 9x - 18
f(x) * g(x) = ( x² + 2x - 24) (x² + 7x + 6) = x^4 + 7x³ + 6x² + 2x³ + 14x² + 12x - 24x² - 168x - 144 = x^4 + 9x³ - 4x² - 156x - 144
f(x) ÷ g(x) = (x² + 2x - 24) ÷ (x² + 7x + 6) = (x + 6) (x - 4) ÷ (x + 6) (x + 1) = (x - 4) / (x + 1)
Pelajari lebih lanjut
Materi Fungsi : brainly.co.id/tugas/1386195
Detil jawaban
Kelas : 10 SMA
Mapel : Matematika
Bab : Fungsi
Kode : 10.2.3
Kata kunci : fungsi, penjumlahan fungsi, aljabar