Ghinashoda
L i m 4xSin x = l i m 4xSinx x⇒0 1-Cos4x x⇒0 2Sin²x = l i m 4x x⇒0 2Sin2x = 4/2(2)⇒ = 4/4 = 1
L i m 1 - 2Sin²x = l i m Cos²x - Sin²x x⇒π/4 Cosx-Sinx x⇒π/4 Cosx - Sinx = l i m (Cosx - Sin x)(Cosx+Sinx) x⇒π/4 (Cosx - Sinx) = L i m (Cosx + Sinx) x⇒π/4 = Cosπ/4 + Sinπ/4 = 1/2 √2 + 1/2√2 = √2
x⇒0 1-Cos4x x⇒0 2Sin²x
= l i m 4x
x⇒0 2Sin2x
= 4/2(2)⇒
= 4/4
= 1
L i m 1 - 2Sin²x = l i m Cos²x - Sin²x
x⇒π/4 Cosx-Sinx x⇒π/4 Cosx - Sinx
= l i m (Cosx - Sin x)(Cosx+Sinx)
x⇒π/4 (Cosx - Sinx)
= L i m (Cosx + Sinx)
x⇒π/4
= Cosπ/4 + Sinπ/4
= 1/2 √2 + 1/2√2
= √2