Rozwiąż równanie
2/(x^2+x)-1/x^2=1/6x
/ -to kreska ułamkowa
(2-x)/(x^2+x)=1/6x
(2-x)/ x^2+x) - 1/6x=0
{[(2x-x)*6x]-x^2-x} / [(x^2+x)*6x]=0
(12x-6x^2-x^2-x) / (6x^3+6x^2)=0
{x(-7x-11)} / [x(6x^2+6x)} = 0
(-7x-11) / (6x^2+6x) =0 /*(6x^2+6x)
(-7x-11)*(6x^2+6x)=0
-42x^3-42x^2-66x^2-66x=0
-42x^3-108x^2-66x=0
2x(-21x^2-54x-33)=0
2x=0
delta=(-54)^2-4*(-21)*(-33)=2916-2772=144
pier z delty=12
x1= (-54-12)/-42=-66/-42=11/7
x2=(-54+12)/-42=-42/-42=1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
(2-x)/(x^2+x)=1/6x
(2-x)/ x^2+x) - 1/6x=0
{[(2x-x)*6x]-x^2-x} / [(x^2+x)*6x]=0
(12x-6x^2-x^2-x) / (6x^3+6x^2)=0
{x(-7x-11)} / [x(6x^2+6x)} = 0
(-7x-11) / (6x^2+6x) =0 /*(6x^2+6x)
(-7x-11)*(6x^2+6x)=0
-42x^3-42x^2-66x^2-66x=0
-42x^3-108x^2-66x=0
2x(-21x^2-54x-33)=0
2x=0
delta=(-54)^2-4*(-21)*(-33)=2916-2772=144
pier z delty=12
x1= (-54-12)/-42=-66/-42=11/7
x2=(-54+12)/-42=-42/-42=1