Penjelasan dengan langkah-langkah:
titik A = ( 1/2, 1/3 )
cari gradien persamaan : 2x - 4y = 3
4y = 2x - 3
y = 1/4 (2x - 3)
y = 1/2x - 4/3
m = 1/2
garis yg melalui titik A tegak lurus dgn garis
2x - 4y = 3
jika gradien garis A = mₐ
maka :
mₐ × m = -1 (syarat tegak lurus)
mₐ × 1/2 = -1
mₐ = -1/(1/2)
mₐ = -1 × 2
mₐ = -2
persaman garis melalui titik A (1/2, 1/3)
y - b = m(x - a)
y - 1/3 = -2(x - 1/2)
y - 1/3 = -2x + 1
2x + y = 1 + 1/3
2x + y = 3/3 + 1/3
2x + y = 4/3
6x + 3y = 4
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
titik A = ( 1/2, 1/3 )
cari gradien persamaan : 2x - 4y = 3
4y = 2x - 3
y = 1/4 (2x - 3)
y = 1/2x - 4/3
m = 1/2
garis yg melalui titik A tegak lurus dgn garis
2x - 4y = 3
jika gradien garis A = mₐ
maka :
mₐ × m = -1 (syarat tegak lurus)
mₐ × 1/2 = -1
mₐ = -1/(1/2)
mₐ = -1 × 2
mₐ = -2
persaman garis melalui titik A (1/2, 1/3)
y - b = m(x - a)
y - 1/3 = -2(x - 1/2)
y - 1/3 = -2x + 1
2x + y = 1 + 1/3
2x + y = 3/3 + 1/3
2x + y = 4/3
6x + 3y = 4