Ciąg arytmetyczny jest rosnący, gdy r>0
a)
[tex]b_{n}=n^2 \\ \\ b_{n + 1}=(n + 1)^2 \\ \\ b_{n + 1}= {n}^{2} + 2n + 1 \\ \\ b_{n + 1} - b_n = {n}^{2} + 2n + 1 - {n}^{2} \\ \\ b_{n + 1} - b_n =2n + 1 \\ \\ 2n + 1 > 0\leftrightarrow n\in N_+ \\ [/tex]
b)
[tex]b_{n} = 4n - 5 \\ \\ b_{n + 1} = 4(n + 1) - 5 \\ \\ b_{n + 1} - b_{n} = 4n - 1 - (4n - 5) \\ \\ b_{n + 1} - b_{n} = 4 \\ [/tex]
c)
[tex]b_{n} =\frac{-3}{n} \\ \\ b_{n + 1} =\frac{-3}{n + 1} \\ \\ b_{n + 1} - b_{n} = \frac{ - 3}{n + 1} - (\frac{-3}{n}) \\ \\ b_{n + 1} - b_{n} = \frac{ - 3n - ( - 3n - 3)}{n(n + 1)} \\ \\ b_{n + 1} - b_{n} = \frac{3}{n(n + 1)} \\ \\ \frac{3}{n(n + 1)} > 0\leftrightarrow n\in N_+ \\ [/tex]
d)
[tex]b_{n} = \frac{3n+4}{n+2} \\ \\ b_{n + 1} = \frac{3(n + 1)+4}{n + 1+2} \\ \\ b_{n + 1} - b_{n} = \frac{3n+7}{n+3} - \frac{3n + 4}{n + 2} \\ \\ b_{n + 1} - b_{n} = \frac{(3n + 7)(n + 2) - (3n + 4)(n + 3)}{(n + 3)(n + 2)} = \\ \\ b_{n + 1} - b_{n} = \frac{3 {n}^{2} + 6n + 7n + 14 - (3 {n}^{2} + 9n + 4n + 12 )}{(n + 3)(n + 2)} = \\ \\ b_{n + 1} - b_{n} = \frac{2}{(n + 3)(n + 2)} \\ \\ \frac{2}{(n + 3)(n + 2)} > 0\leftrightarrow n\in N_+ \\ [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Ciąg arytmetyczny jest rosnący, gdy r>0
a)
[tex]b_{n}=n^2 \\ \\ b_{n + 1}=(n + 1)^2 \\ \\ b_{n + 1}= {n}^{2} + 2n + 1 \\ \\ b_{n + 1} - b_n = {n}^{2} + 2n + 1 - {n}^{2} \\ \\ b_{n + 1} - b_n =2n + 1 \\ \\ 2n + 1 > 0\leftrightarrow n\in N_+ \\ [/tex]
b)
[tex]b_{n} = 4n - 5 \\ \\ b_{n + 1} = 4(n + 1) - 5 \\ \\ b_{n + 1} - b_{n} = 4n - 1 - (4n - 5) \\ \\ b_{n + 1} - b_{n} = 4 \\ [/tex]
c)
[tex]b_{n} =\frac{-3}{n} \\ \\ b_{n + 1} =\frac{-3}{n + 1} \\ \\ b_{n + 1} - b_{n} = \frac{ - 3}{n + 1} - (\frac{-3}{n}) \\ \\ b_{n + 1} - b_{n} = \frac{ - 3n - ( - 3n - 3)}{n(n + 1)} \\ \\ b_{n + 1} - b_{n} = \frac{3}{n(n + 1)} \\ \\ \frac{3}{n(n + 1)} > 0\leftrightarrow n\in N_+ \\ [/tex]
d)
[tex]b_{n} = \frac{3n+4}{n+2} \\ \\ b_{n + 1} = \frac{3(n + 1)+4}{n + 1+2} \\ \\ b_{n + 1} - b_{n} = \frac{3n+7}{n+3} - \frac{3n + 4}{n + 2} \\ \\ b_{n + 1} - b_{n} = \frac{(3n + 7)(n + 2) - (3n + 4)(n + 3)}{(n + 3)(n + 2)} = \\ \\ b_{n + 1} - b_{n} = \frac{3 {n}^{2} + 6n + 7n + 14 - (3 {n}^{2} + 9n + 4n + 12 )}{(n + 3)(n + 2)} = \\ \\ b_{n + 1} - b_{n} = \frac{2}{(n + 3)(n + 2)} \\ \\ \frac{2}{(n + 3)(n + 2)} > 0\leftrightarrow n\in N_+ \\ [/tex]