1. Diketahui (f o g)(x) = x + 1 dan f(x-2) = (x - 1)/(x - 2). Maka nilai dari g-' (2) [dibaca: g invers 2] adalah...
Penyelesaian:
f(x - 2) = (x - 1)/(x - 2)
Inverskan x-2 agar ditemukan nilai dari f(x)
y = x - 2
x = y + 2 <----> y = x + 2 maka:
f(x) = [(x + 2) - 1]/[(x + 2) - 2]
f(x) = (x + 1)/x
(f o g)(x) = f(g(x))
f(g(x)) = x + 1
[g(x) + 1]/g(x) = x + 1
g(x) + 1 = (x + 1). g(x)
g(x) + 1 = x.g(x) + g(x)
g(x) - x.g(x) -g(x) = -1
-x.g(x) = -1
g(x) = 1/x
g(x) = 1/x
y = 1/x
x = 1/y, maka:
g-'(x) = 1/x
Jadi, nilai dari g-'(2) adalah = 1/x = 1/2.
2. Diketahui f(3 + 2x) = 4 - 2x + x². maka f(x) = ....?
Penyelesaian:
Jadi f(x) = 1/4 x² - 10/4x + 37/4
3. Diketahui f(x) = x³ + 4 dan g(x) = 2sinx. Nilai dari (f o g)(-90) adalah...
Penyelesaian:
(f o g)(x) = f(g(x))
= (g(x))³ + 4
= (2sinx)³ + 4
= 8sin³x + 4
Jadi, ( f o g) (-90) adalah
= 8sin³(-90) + 4
= 8.(-1) + 4
= -8 + 4 = 4.
4. Diketahui g(x) = (x² + 2x - 3)/4. Maka g-'(x) adalah...
Penyelesaian:
Perhatikan penyebutnya, untuk mencari invers sebuah fungsi kuadrat, salah satu caranya adalah mengubah persamaan umum kuadrat menjadi bentuk kuadrat sempurna. Maka:
= x² + 2x - 3
= x² + 2x + 1 - 1 - 3
= (x + 1)² - 4
Jadi,
g(x) = (x² + 2x - 3)/4
g(x) = [(x + 1)² - 4]/4
y = [(x + 1)² - 4]/4
4y = [(x + 1)² - 4]
(x + 1)² = 4y + 4
(x + 1)² = 4(y + 1)
x + 1 = √4(y + 1)
x + 1 = ±2 √(y + 1)
x = -1 ±2 √(y + 1)
g-'(x) = -1 ±2 √(x + 1)
5. Diketahui g(x) = px + q dan (g o g)(x) = 16x - 15 maka nilai p dan q adalah...
Penyelesaian:
(g o g)(x) = g(g(x))
16x - 15 = p(g(x)) + q
16x - 15 = p(px + q) + q
16x - 15 = p²x + pq + q
Cocokkan sesuai dengan variabel/konstantanya.
16x = p²x dan -15 = pq + q
Kemudian mencari nilai p dan q nya.
16x = p²x
16 = p²
p = √16 ------> p = ± 4.
Jika p = 4 maka q =
-15 = 4q + q
-15 = q(4 + 1)
q = -15/5 = -3
Jika p = -4 maka q =
-15 = -4q + q
-15 = q(-4 + 1)
q = -15/-3 = 5
Jadi, nilai p dan q adalah (4 dan -3) atau (-4 dan 5).
1. Diketahui (f o g)(x) = x + 1 dan f(x-2) = (x - 1)/(x - 2). Maka nilai dari g-' (2) [dibaca: g invers 2] adalah...
Penyelesaian:
f(x - 2) = (x - 1)/(x - 2)
Inverskan x-2 agar ditemukan nilai dari f(x)
y = x - 2
x = y + 2 <----> y = x + 2 maka:
f(x) = [(x + 2) - 1]/[(x + 2) - 2]
f(x) = (x + 1)/x
(f o g)(x) = f(g(x))
f(g(x)) = x + 1
[g(x) + 1]/g(x) = x + 1
g(x) + 1 = (x + 1). g(x)
g(x) + 1 = x.g(x) + g(x)
g(x) - x.g(x) -g(x) = -1
-x.g(x) = -1
g(x) = 1/x
g(x) = 1/x
y = 1/x
x = 1/y, maka:
g-'(x) = 1/x
Jadi, nilai dari g-'(2) adalah = 1/x = 1/2.
2. Diketahui f(3 + 2x) = 4 - 2x + x². maka f(x) = ....?
Penyelesaian:
Jadi f(x) = 1/4 x² - 10/4x + 37/4
3. Diketahui f(x) = x³ + 4 dan g(x) = 2sinx. Nilai dari (f o g)(-90) adalah...
Penyelesaian:
(f o g)(x) = f(g(x))
= (g(x))³ + 4
= (2sinx)³ + 4
= 8sin³x + 4
Jadi, ( f o g) (-90) adalah
= 8sin³(-90) + 4
= 8.(-1) + 4
= -8 + 4 = 4.
4. Diketahui g(x) = (x² + 2x - 3)/4. Maka g-'(x) adalah...
Penyelesaian:
Perhatikan penyebutnya, untuk mencari invers sebuah fungsi kuadrat, salah satu caranya adalah mengubah persamaan umum kuadrat menjadi bentuk kuadrat sempurna. Maka:
= x² + 2x - 3
= x² + 2x + 1 - 1 - 3
= (x + 1)² - 4
Jadi,
g(x) = (x² + 2x - 3)/4
g(x) = [(x + 1)² - 4]/4
y = [(x + 1)² - 4]/4
4y = [(x + 1)² - 4]
(x + 1)² = 4y + 4
(x + 1)² = 4(y + 1)
x + 1 = √4(y + 1)
x + 1 = ±2 √(y + 1)
x = -1 ±2 √(y + 1)
g-'(x) = -1 ±2 √(x + 1)
5. Diketahui g(x) = px + q dan (g o g)(x) = 16x - 15 maka nilai p dan q adalah...
Penyelesaian:
(g o g)(x) = g(g(x))
16x - 15 = p(g(x)) + q
16x - 15 = p(px + q) + q
16x - 15 = p²x + pq + q
Cocokkan sesuai dengan variabel/konstantanya.
16x = p²x dan -15 = pq + q
Kemudian mencari nilai p dan q nya.
16x = p²x
16 = p²
p = √16 ------> p = ± 4.
Jika p = 4 maka q =
-15 = 4q + q
-15 = q(4 + 1)
q = -15/5 = -3
Jika p = -4 maka q =
-15 = -4q + q
-15 = q(-4 + 1)
q = -15/-3 = 5
Jadi, nilai p dan q adalah (4 dan -3) atau (-4 dan 5).