" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
w(x)=2x^5-x^4-x^3
W(x)=x³ (2x²-x-1) ; 2x²-x-1 jest to trojmian kwadratowy , przedstawiamy go
w postaci iloczynowej
Δ=b²-4ac
Δ=(-1)²-4*2*(-1)
Δ=1+8
Δ=9
√Δ=3
X1=(-b-√Δ) / 2a
X!=(1-3)/4
X1=-2/4
X1= -1/2
X2=(-b+√Δ)/2a
X2=(1+3)/4
X2=1
2x²-x-1=2(x-1)(x+1/2) wiec
W(x)=2x³ (x-1)(x+1/2)
-------------------------------------------
c)
W(x)=-2x³-x²+6x
W(x)=x (-2x²-x+6)
Δ=(-1)²-4*(-2)*6
Δ=1+48
Δ=49
√Δ=7
X1=(1-7)/(-4)
X1=-6/(-4)
X1=1,5
X2=(1+7)/(-4)
X2=8/(-4)
X2=-2
-2x²-x-6=-2(x-1,5)(x+2)
W(x)== -2x(x-1,5)(x+2)
-----------------------------------------------e)
W(x)=x^4-3x^3+(5/4)x^2
W(x)=x² (x²-3x+ 5/4)
Δ=(-3)²-4*1*5/4
Δ=9-5
Δ=4
√Δ=2
X1=(3-2)/2
X!=1/2
X2=(3+2)/2
X2=5/2
x²-3x+5/4=(x-5/2)(x-1/2)
W(x)=x²(x-5/2)(x-1/2)