Jawab:
limit trigonometri
bentuk 0/0 --> lim (x - >0) (ax )/ tan (bx) = a/b
Penjelasan dengan langkah-langkah:
limit (x -> 2) [ (x - 2) . cos ( πx - 2π) ] / [ tan (2πx - 4π) ] =
.
= lim (x -> 2) [ (x - 2) . cos π(x - 2) ] / [ tan 2π (x - 2)]
= lim(x->2) cos π(x - 1) . limit (x- >2) [ (x- 2 )/ tan 2π (x - 2) ]
= 1 . 1/(2π)
= 1/(2π)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawab:
limit trigonometri
bentuk 0/0 --> lim (x - >0) (ax )/ tan (bx) = a/b
Penjelasan dengan langkah-langkah:
limit (x -> 2) [ (x - 2) . cos ( πx - 2π) ] / [ tan (2πx - 4π) ] =
.
= lim (x -> 2) [ (x - 2) . cos π(x - 2) ] / [ tan 2π (x - 2)]
= lim(x->2) cos π(x - 1) . limit (x- >2) [ (x- 2 )/ tan 2π (x - 2) ]
= 1 . 1/(2π)
= 1/(2π)