Sprawdź, czy trójkąt ABC jest podobny do trójkąta MPN, gdy: A=(1,0),B=(3,3)C=(-1,4),M=(3,-2),P=(-5,-4),N=(-1,6)
A = (1;0),B = (3;3), C = (-1; 4)
zatem
I AB I^2 = (3-1)^2 + (3 -0)^2 = 2^2 + 3^2 = 4 + 9 = 13
czyli I AB I = p(13)
I BC I^2 = (-1-3)^2 + (4 -3)^2 = (-4)^2 + 1^2 = 16 +1 = 17
czyli I BC I = p(17)
I AC I^2 = (-1 -1)^2 + (4 - 0)^2 = (-2)^2 + 4^2 = 4 + 16 = 20
czyli I AC I = p(20)
M = (3 ; -2), P = (-5; -4), N = ( -1; 6)
I MP I^2 = (-5 -3)^2 + (-4 -(-2))^2 = (- 8)^2 + (-2)^2 = 64 + 4 = 68 = 4*17
czyli I MP I = 2 p(17)
I PN I^2 = (-1 -(-5))^2 + (6 - (-4))^2 = 4^2 + 10^2 = 16 + 100 = 116 = 4*29
czyli I PN I = 2 p(29)
I MN I^2 = (-1 -3)^2 + (6 -(-2))^2 = (-4)^2 + 8^2 = 16 + 64 = 80 = 4*20
czyli I MN I = 2 p(20)
Te trójkąty nie są podobne, bo
I MP I = 2 * I BC I
I MN I = 2* I AC I,
ale I PN I = 2 p(29) > 2 *p(13) = 2 * I AB I
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
A = (1;0),B = (3;3), C = (-1; 4)
zatem
I AB I^2 = (3-1)^2 + (3 -0)^2 = 2^2 + 3^2 = 4 + 9 = 13
czyli I AB I = p(13)
I BC I^2 = (-1-3)^2 + (4 -3)^2 = (-4)^2 + 1^2 = 16 +1 = 17
czyli I BC I = p(17)
I AC I^2 = (-1 -1)^2 + (4 - 0)^2 = (-2)^2 + 4^2 = 4 + 16 = 20
czyli I AC I = p(20)
M = (3 ; -2), P = (-5; -4), N = ( -1; 6)
I MP I^2 = (-5 -3)^2 + (-4 -(-2))^2 = (- 8)^2 + (-2)^2 = 64 + 4 = 68 = 4*17
czyli I MP I = 2 p(17)
I PN I^2 = (-1 -(-5))^2 + (6 - (-4))^2 = 4^2 + 10^2 = 16 + 100 = 116 = 4*29
czyli I PN I = 2 p(29)
I MN I^2 = (-1 -3)^2 + (6 -(-2))^2 = (-4)^2 + 8^2 = 16 + 64 = 80 = 4*20
czyli I MN I = 2 p(20)
Te trójkąty nie są podobne, bo
I MP I = 2 * I BC I
I MN I = 2* I AC I,
ale I PN I = 2 p(29) > 2 *p(13) = 2 * I AB I