Sprawdź, czy podane równości są tożsamościami:
a) (1-x)(1+x(1+x²)= 1-x^4
b) 2(a-b)² - 2(a+b)² + 4(a+b)(a-b)= 4a² - 4b² - 8ab
c) (m+1)² - (2m-2)² + (2m+3)² - (4m-4)²= -15m² + 54m -10
jeśli można to proszę o wytłumaczenie.
Z góry dzięki :)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Korzystamy ze wzorów skroconego mnożenia:
(a+b)(a-b) = a^2 - b^2
(a+b)^2 = a^2 + 2ab + b^2
(a-b)^2 = a^2 - 2ab + b^2
a)
(1-x)(1+x)(1+x^2) = 1-x^4
L = (1-x)(1+x)(1+x^2) = (1-x^2)(1+x^2) = 1-x^4
P = 1-x^4
L = P
b)
2(a-b)^2 -2(a+b)^2 + 4(a+b)(a-b) = 4a^2 - 4b^2 - 8ab
L = 2[a^2 -2ab +b^2 -(a^2 + 2ab + b^2)] + 4a^2 - 4b^2 =
= 2(a^2 - 2ab + b^2 - a^2 - 2ab - b^2 + 4a^2 - 4b^2 =
= 2(-2ab) + 4a^2 - 4b^2 = 4a^2 - 4b^2 - 8ab
P = 4a^2 - 4b^2 - 8ab
L = P
c)
(m+1)^2 -(2m-2)^2 +(2m+3)^2 -(4m-4)^2 = -15m^2 + 54m -10
L = (m+1)^2 -2(2m-2)^2 +(2m+3)^2 -(4m-4)^2 =
= m^2 + 2m +1 -(4m^2 - 8m + 4) + 4m^2 +12m + 9 -(16m^2 - 32m + 16) =
= m^2 + 2m +1 - 4m^2 + 8m - 4 + 4m^2 +12m + 9 -16m^2 +32m -16 =
= -15m^2 + 54m -10
P = -15m^2 + 54m -10
L = P