" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a) S(n) ...n = 1:
S(1): 1³ = 1² => S(1)
b) S(n) --> S(n+1)
1³ + 2³ + 3³ +...+ n³ = (1+ 2+ 3+...+ n)²
1+ 2+ 3+...+ n = n(n+1)/2
1³ + 2³ + 3³ +...+ n³ = (n(n+1)/2)².
1³ + 2³ +...+ n³+ (n+1)³ = (n(n+1)/2)² + (n+1)³
= (n+1)²(n/2)² + (n+1)²(n+1)
= (n+1)²((n/2)²+ (n+1))
= (n+1)²(n²/2² + n +1 )
= (1/2²)(n+1)²(n²+ 2²n + 2²)
= (1/2²)(n+1)²(n²+ 2*2n + 2²)
= (1/2²)(n+1)²(n+ 2)²
= ((n+1)(n+ 2)/2)²
= (1+ 2+ 3 +...+ n + (n+1))².
1³ + 2³ +...+ n³+ (n+1)³ = (1+ 2+ 3 +...+ n + (n+1))².
..........................................................................................
induksi ?
(1+2+3+...+n)² = [n(n+1)/2]²
for n = 1
= 1³ = 1
= [ 1² (1 + 1)² ] / 4 = 4/4 = 1
then
1³ + 2³ + 3³ + ... + k³ = [ k² (k + 1)² ] /4
n = k + 1
= 1³ + 2³ + 3³ + ... + k³ + (k + 1)³
=[ k² (k + 1)² ] /4 + (k + 1)³
= [ k² (k + 1)² + 4(k + 1)³ ] /4
= [ k² (k + 1)² + 4(k + 1)³ ] /4
= [ k⁴ + 2k³ + k² + 4k³ + 12k² + 12k + 4 ] /4
= [ k⁴ + 6k³ + 13k² + 12k + 4 ] /4
= [ (k + 1)² (k + 2)² ] /4
= [ (k² + 2k + 1)(k² + 4k + 4) ] /4
= [ k⁴ + 6k³ + 13k² + 12k + 4 ] /4
P(k) = P(k + 1)
so by mathematical induction, the statement is true