" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
u = 3x
dx = 1/3 du
∫ sin^4(3x)cos^2(3x) dx = (1/3) ∫ sin^4(u)cos^2(u) du
cos^2(u) = (1 - sin^2(u))
= (1/3) ∫ [sin^4(u) (1 - sin^2(u)) ] du
= (1/3) ∫ [sin^4(u) - sin^6(u)] du
= (1/3) ∫ sin^4(u) - (1/3) ∫ sin^6(u)] du
*wah ini pake rumus reduksi integal
∫ (sin^n)u du= -(1/n)[(sin^(n-1))u]cos u+[(n-1)/n] ∫ (sin^(n-2))u du
(1/3) ∫ sin^4(u)= 1/3[ (-1/4)[ sin^3(u).cos(u) + 3/4 ∫ sin^2 (u) du]
=-1/12 sin^3 (u) cos(u)+ 1/4 ∫ sin^2 (u) du
1/4 ∫ sin^2 (u) du = 1/4 [ -1/2 ( sin (u). cos (u) + 1/2 (u)]
(1/3) ∫ sin^4(u) du = -1/12 sin^3 (u) cos(u) -1/8 sin (u) cos (u) + 1/8 u
*lanjutin yang - (1/3) ∫ sin^6(u)] du= ......