Odpowiedź:
Korzystamy ze wzoru:
[tex]\huge\boxed{\dfrac{1-cos^{2} \alpha }{sin\alpha \cdot cos\alpha } =tg\alpha }[/tex]
[tex]L=\dfrac{1-cos^{2} \alpha }{sin\alpha \cdot cos\alpha } =\dfrac{1-(1-sin^{2} \alpha )}{sin\alpha \cdot cos\alpha } =\dfrac{1-1+sin^{2} \alpha }{sin\alpha \cdot cos\alpha } =\dfrac{sin^{2}\alpha \!\!\!\!\!\diagup^s^i^n^\alpha }{sin\alpha\!\!\!\!\!\diagup_1 \cdot cos\alpha } =\dfrac{sin\alpha }{cos\alpha } =tg\alpha[/tex]
[tex]P=tg\alpha \\\\\\L=P~~~~cbdu[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
Korzystamy ze wzoru:
[tex]\huge\boxed{\dfrac{1-cos^{2} \alpha }{sin\alpha \cdot cos\alpha } =tg\alpha }[/tex]
[tex]L=\dfrac{1-cos^{2} \alpha }{sin\alpha \cdot cos\alpha } =\dfrac{1-(1-sin^{2} \alpha )}{sin\alpha \cdot cos\alpha } =\dfrac{1-1+sin^{2} \alpha }{sin\alpha \cdot cos\alpha } =\dfrac{sin^{2}\alpha \!\!\!\!\!\diagup^s^i^n^\alpha }{sin\alpha\!\!\!\!\!\diagup_1 \cdot cos\alpha } =\dfrac{sin\alpha }{cos\alpha } =tg\alpha[/tex]
[tex]P=tg\alpha \\\\\\L=P~~~~cbdu[/tex]