" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Dane:
sinα= 2/3
√5 (ctgα-tgα) = ?
tgα = sinα/cosα
ctgα = 1/tgα
sin²α + cos²α = 1
cos²α = 1 - sin²α
cos²α = 1 - (2/3)²
cos²α = 1 - 4/9
cos²α = 5/9
cos²α - 5/9 = 0
(cosα - √5/3)(cosα + √5/3) = 0
cosα - √5/3 = 0 ∨ cosα + √5/3 = 0
cosα = √5/3 ∨ cosα = - √5/3
tgα = sinα/cosα
tgα = (2/3): (√5/3) ∨ tgα = (2/3): (- √5/3)
tgα = 0,4√5 ∨ tgα = - 0,4√5
ctgα = 1/0,4√5 ∨ ctgα = - 1/0,4√5
ctgα = 0,5√5 ∨ ctgα = - 0,5√5
√5 (ctgα-tgα) = √5 (0,5√5 - 0,4√5) = √5*0,1√5 = 0,5
lub
5 (ctgα-tgα) = √5 (- 0,5√5 + 0,4√5) = - √5*0,1√5 = - 0,5
Zad. 2)
1 + ctgα = (sinα + cosα)/sinα
P = (sinα + cosα)/sinα = sinα/sinα + cosα/sinα =
= 1 + ctgα =
= P