Udowodnij tożsamość
ctg2 alfa * sin alfa = 1/sin alfa - sin alfa
ctg²α · sinα = 1/sinα - sinα
L = cos²α/sin²α · sinα = (1-sin²α)·sinα/sin²α = (1-sin²α)/sinα = 1/sinα - sin²α/sinα =
= 1/sinα - sinα
P = 1/sinα - sinα
L = P
ctgα = cosα/sinα
ctg²α = cos²α/sin²α
sin²α+cos²α = 1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
ctg²α · sinα = 1/sinα - sinα
L = cos²α/sin²α · sinα = (1-sin²α)·sinα/sin²α = (1-sin²α)/sinα = 1/sinα - sin²α/sinα =
= 1/sinα - sinα
P = 1/sinα - sinα
L = P
ctgα = cosα/sinα
ctg²α = cos²α/sin²α
sin²α+cos²α = 1