wiedząc że tg alfa = 2/13 oblicz wartość wyrażenia tg alfa - cos alfa / sin alfa + cos alfa
tg alfa = 2/13
zatem
y/x = 2/13
y = 2, x = 13
czyli
r^2 = x^2 + y^2 = 13^2 + 2^2 = 169 + 4 = 173
r = p(173)
cos alfa = x/r = 13/p(173)
oraz
sin alfa = y/r = 2 / p(173)
Mamy więc
( tg alfa - cos alfa) / ( sin alfa + cos alfa) =
= ( 2/13 - 13/p(173))/ ( 2/ p(173) + 13/ p(173)) =
= ( 2/13 - 13/ p(173))/( 15/ p(173) ) =
= ( 2/13 - 13/ p(173) ) * ( p(173)/15) =
= ( 2 p(173))/195 - 13/15 = ( 2 p(173))/195 - 169/195 =
= ( 2 p(173) - 169)/195
==========================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
tg alfa = 2/13
zatem
y/x = 2/13
y = 2, x = 13
czyli
r^2 = x^2 + y^2 = 13^2 + 2^2 = 169 + 4 = 173
r = p(173)
cos alfa = x/r = 13/p(173)
oraz
sin alfa = y/r = 2 / p(173)
Mamy więc
( tg alfa - cos alfa) / ( sin alfa + cos alfa) =
= ( 2/13 - 13/p(173))/ ( 2/ p(173) + 13/ p(173)) =
= ( 2/13 - 13/ p(173))/( 15/ p(173) ) =
= ( 2/13 - 13/ p(173) ) * ( p(173)/15) =
= ( 2 p(173))/195 - 13/15 = ( 2 p(173))/195 - 169/195 =
= ( 2 p(173) - 169)/195
==========================