Jawab:
E
Penjelasan dengan langkah-langkah:
Berdasarkan sifat eksponen [tex]\displaystyle a^ma^n=a^{m+n}[/tex] dan [tex]\displaystyle (a^m)^n=a^{mn}[/tex]
[tex]\begin{aligned}\underset{n~\textrm{faktor}}{\underbrace{36^{0,125}\times36^{0,125}\times36^{0,125}\times...\times36^{0,125}}}&=216\\36^{0,125+9,125+0,125+...+0,125}&=6^3\\36^{0,125n}&=6^3\\(6^2)^{\frac{1}{8}n}&=6^3\\\frac{n}{4}&=3\\n&=12\end{aligned}[/tex]
maka
[tex]\begin{aligned}(n-7)(n-9)&=(12-7)(12-9)\\&=15\end{aligned}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawab:
E
Penjelasan dengan langkah-langkah:
Berdasarkan sifat eksponen [tex]\displaystyle a^ma^n=a^{m+n}[/tex] dan [tex]\displaystyle (a^m)^n=a^{mn}[/tex]
[tex]\begin{aligned}\underset{n~\textrm{faktor}}{\underbrace{36^{0,125}\times36^{0,125}\times36^{0,125}\times...\times36^{0,125}}}&=216\\36^{0,125+9,125+0,125+...+0,125}&=6^3\\36^{0,125n}&=6^3\\(6^2)^{\frac{1}{8}n}&=6^3\\\frac{n}{4}&=3\\n&=12\end{aligned}[/tex]
maka
[tex]\begin{aligned}(n-7)(n-9)&=(12-7)(12-9)\\&=15\end{aligned}[/tex]