" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
1. Aplicar propiedad del logaritmo log (a) - log (b) = log (a/b)
log (x/100) = log (x) - log (100)
2. Sustituir y calcular los valores correspondientes.
log (x) = 7,2
log (100) = 2
log (x) - log (100) = 7,2 - 2 = 5,2.
B)
1. Reescribir.
= log (1/x)∧(1/4)
2. Aplicar propiedad del logaritmo: a logₓ (c) = logₓ (cᵃ)
log (1/x)∧(1/4) = (1/4) log (1/x)
3. Simplificar.
(1/4) log (1/x) = (1/4) (- log (x) ) = - 1/4 log (x)
4. Sustituir y calcular los valores correspondientes.
log (x) = 7,2
- 1/4 log (x) = (- 1/4) (7,2) = - 1,8.
C) log ( 0,01x² )
1. Aplicar la propiedad del logaritmo: logₓ (a) + logₓ (b) = logₓ (a*b).
log (0,01.x²) = log(0,01) + log (x²)
2. Aplicar la propiedad del logaritmo: a logₓ (c) = logₓ (cᵃ)
log(0,01) + log (x²) = log(0,01) + 2 log (x)
3. Sustituir y calcular los valores correspondientes.
log (x) =7,2
log(0,01) = -2
log(0,01) + 2 log (x) = -2 +(2 * 7,2) = 12,4.
D) (log (x))∧(1/3)
1. Reescribir.
(log (x))∧(1/3) = ∛(log (x)
2. Sustituir y calcular los valores correspondientes.
log (x) = 7,2
∛(log (x) = ∛(7,2) = 1,93