" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
= ∫x.e^(-x²) d(-x²)/(-2x)
= ∫e^(-x²) d(-x²) / (-2)
= -1/2 ∫e^(-x²) d(-x)²
= -1/2 e^(-x²) + C
==========
∫(x³/(⁴√(x⁴+3)) dx
= ∫x³/((x⁴+3)^(1/4)) d(x⁴+3)/(4x³)
= ∫1/(x⁴+3)^(1/4) d(x⁴+3) / 4
= 1/4 ∫1/(x⁴+3)^(1/4) d(x⁴+3)
= 1/4 ∫(x⁴+3)^(-1/4) d(x⁴+3)
= 1/4 (3/4)(x⁴+3)^(3/4) + C
= 3/16 (x⁴+3)^(3/4) + C
= 3/16 ⁴√(x⁴+3)³ + C