rozwiązaniem równania x+2 √3 =1+x√3 jest liczba:
a)1
b)2
c) √3+5
-----
2
d) √3-5
p(3) <-- pierwiastek kwadratowy z 3
x + 2 p(3) = 1 + x p(3)
x - x p(3) = 1 - 2 p(3)
x *(1 - p(3)) = 1 - 2 p(3)
x = [1 - 2 p(3)]/[ 1 - p(3)]
x = [(1 - 2 p(3)) *( 1 + p(3)]/[( 1 - p(3)) *( 1 + p(3))]
x = [ 1 + p(3) - 2 p(3) - 6]/[1 - 3)
x = [-5 - p(3)]/(-2)
x = ( 5 + p(3)]/2
===================
Odp. C
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
p(3) <-- pierwiastek kwadratowy z 3
x + 2 p(3) = 1 + x p(3)
x - x p(3) = 1 - 2 p(3)
x *(1 - p(3)) = 1 - 2 p(3)
x = [1 - 2 p(3)]/[ 1 - p(3)]
x = [(1 - 2 p(3)) *( 1 + p(3)]/[( 1 - p(3)) *( 1 + p(3))]
x = [ 1 + p(3) - 2 p(3) - 6]/[1 - 3)
x = [-5 - p(3)]/(-2)
x = ( 5 + p(3)]/2
===================
Odp. C