Rozwiąż
a) P+Q-W
b) (P+Q)w
W=3x^3+x^2+1
P=x+3
Q=x^2-3
a) = (x+3)+(x^2-3)-(3x^3+x^2+1)+x+3+x^2-3-3x^3-x^2-1=-3x^3+x-1
b) = [(x+3)+(x^2-3)]*3x^3+x^2+1=(x^2+x)(3x^3+x^2+1)=3x^5+x^4+x^2+3x^4+x^3+x=3x^5+4x^4+x^3+x^2+x
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a) = (x+3)+(x^2-3)-(3x^3+x^2+1)+x+3+x^2-3-3x^3-x^2-1=-3x^3+x-1
b) = [(x+3)+(x^2-3)]*3x^3+x^2+1=(x^2+x)(3x^3+x^2+1)=3x^5+x^4+x^2+3x^4+x^3+x=3x^5+4x^4+x^3+x^2+x
a) = (x+3)+(x^2-3)-(3x^3+x^2+1)+x+3+x^2-3-3x^3-x^2-1=-3x^3+x-1
b) = [(x+3)+(x^2-3)]*3x^3+x^2+1=(x^2+x)(3x^3+x^2+1)=3x^5+x^4+x^2+3x^4+x^3+x=3x^5+4x^4+x^3+x^2+x