" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
2cos²x+5cosx=3
cosx=t, t∈<-1,1>
2t²+5t-3=0
Δ=b²-4ac
Δ=25+24=49
√Δ=7
t₁=(-b-√Δ)/2a=(-5-7)/4=-3 ∉D
t₂=(-b+√Δ)/2a=(-5+7)/4=1/2 ∈D
cosx=¹/₂
cosx=cosπ/₃
x=π/₃+k·2π v x=-π/₃+k·2π
d)
cos²x+sin²x=1
cos²x=1-sin²x
cos²x+5sinx=5
1-sin²x+5sinx-5=0
-sin²x+5sinx-4=0
sinx=t, t∈<-1,1>
-t²+5t-4=0
Δ=b²-4ac
Δ=25-16=9
√Δ=3
t₁=(-b-√Δ)/2a=(-5-3)/(-2)=4 ∉D
t₂=(-b+√Δ)/2a=(-5+3)/(-2)=1 ∈D
sinx=1
sinx=sinπ/₂
x=π/₂+k·2π
16b)
sin2x=2sinxcosx
sinxsin2x=cosx
sinx2sinxcosx-cosx=0
cosx(2sin²x-1)=0
1.cosx=0 v 2. 2sin²x-1=0
1.
cosx=cosπ/2
x=π/2 + kπ
2.
2sin²x=1
sin²x=¹/₂
a)sinx=√2/2 v b) sinx=-√2/2
a)sinx=sin π/4
x=π/4+k·2π v x=(π-π/4)+k·2π=3/4π+k·2π
b)sinx=sin π/4
x=-π/4+k·2π v x=-3/4π+k·2π
a) lub b)
x=π/4+k·π/2
(y=sinx f nieparzysta)
odp x=π/4+k·π/2 ∨ x=π/2 + kπ
c)
1-cos2x=2sinx
cos2x=1-2sin²x
1-(1-2sin²x)=2sinx
1-1+2sin²x=2sinx
2sin²x-2sinx=0/:2
sin²x-sinx=0
sinx(sinx-1)=0
sinx=0 ∨ sinx=1
sinx=sin0 ∨ sinx=sinπ/2
x=0+kπ ∨ x= π/2 +k·2π
d)
sin2x=2sinxcosx
sin2x+cosx=2sinx+1
2sinxcosx+cosx=2sinx+1
cosx(2sinx+1)-(2sinx+1)=0
(2sinx+1)(cosx-1)=0
2sinx+1=0 ∨ cosx-1=0
1.sinx= -1/2 v 2.cosx=1
1.
sinx=sin(-π/6)
x=-π/6+k·2π ∨ x= -5π/6+k·2π
2.
cosx=cos0
x=0+k·2π
odp.x=-π/6+k·2π ∨ x= -5π/6+k·2π ∨ x=0+k·2π
h)
cos5x-cos3x=sin4x
cosα-cosβ=-2sin(α+β)/2 · sin(α-β)2
-2sin4xsinx=sin4x
-2sin4xsinx-sin4x=0
-sin4x(2sinx+1)=0
1.sin4x=0 ∨ 2.2sinx+1=0
1.
sin4x=sin0
4x=0+k·π
x=k·π/4
2.
2sinx=-1
sinx= -1/2
sinx=sin(-π/6)
x=-π/6+k·2π ∨ x= -5π/6+k·2π
odp x=-π/6+k·2π ∨ x= -5π/6+k·2π ∨ x=k·π/4
e)
sinx+cosx=-1
sinx+sin(x+π/2)=-1 (*)
sinα+sinβ=2sin(α+β)/2·cos(α-β)/2
sinx+sin(x+π/2)=2sin(x+x+π/2)/2·cos(x-x-π/2)/2=2sin(x+π/4)cos(-π/4)
cosα=cos(-α) f parzysta
cos(-π/4)=cos(π/4)
podstawiam (*)
2sin(x+π/4)cos(π/4)=-1
sin(x+π/4)cos(π/4)=-1/2
sin(x+π/4)·√2/2=-1/2 /:(√2/2)
sin(x+π/4)=-1/√2 =-√2/2
sin(x+π/4)=sin(-π/4)
x+π/4=-π/4+k·2π v x+π/4=-3π/4+k·2π
x=-π/2+k·2π v x= -π+k·2π