Rozwiąż x²+3x-18+4√(x²+3x-6)=0
w nawiasie jest całe pod pierwiastkiem
x² + 3x- 18 + 4√(x²+3x-6) = 0
D: x²+3x-6 ≥ 0
Δ = 9 - 4 * 1 * (-6) = 9 + 24 = 33
√Δ = √33
x1 = (- 3 - √33)/2 ~ -4,4
x2 = (-3 + √33)/2 ~ 1,4
D: x ∈ (-oo, x1) u (x2, +oo)
x² + 3x- 6 - 12 + 4√(x²+3x-6) = 0
x²+3x-6 = t i t ≥ 0
t - 12 + 4√t = 0
4√t = 12 - t D: 12 - t ≥ 0 czyli t ≤ 12 i t ≥ 0 to D: t ∈ <0, 12>
4√t = 12 - t /²
(12 - t )² = (4√t)²
144 - 24t + t²= 16t
t² - 24t - 16t + 144 = 0
t² - 40t + 144 = 0
Δ = 40² - 4 * 1 * 144 = 1600 - 576 = 1024
√Δ = 32
t1 = (40 - 32)/2 = 8/2 = 4 ∈ D
t2 = (40 + 32)/2 = 72/2 = 36 ∉ D
x²+3x-6 = t
x²+3x-6 = 4
x²+3x-10 = 0
Δ = 9 + 40 = 49
√Δ = 7
x1 = (-3 - 7)/2 = -10/2 = -5 ∈ D
x2 = (-3 + 7)/2 = 4/2 = 2 ∈ D
odp. x = -5, x = 2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
x² + 3x- 18 + 4√(x²+3x-6) = 0
D: x²+3x-6 ≥ 0
Δ = 9 - 4 * 1 * (-6) = 9 + 24 = 33
√Δ = √33
x1 = (- 3 - √33)/2 ~ -4,4
x2 = (-3 + √33)/2 ~ 1,4
D: x ∈ (-oo, x1) u (x2, +oo)
x² + 3x- 6 - 12 + 4√(x²+3x-6) = 0
x²+3x-6 = t i t ≥ 0
t - 12 + 4√t = 0
4√t = 12 - t D: 12 - t ≥ 0 czyli t ≤ 12 i t ≥ 0 to D: t ∈ <0, 12>
4√t = 12 - t /²
(12 - t )² = (4√t)²
144 - 24t + t²= 16t
t² - 24t - 16t + 144 = 0
t² - 40t + 144 = 0
Δ = 40² - 4 * 1 * 144 = 1600 - 576 = 1024
√Δ = 32
t1 = (40 - 32)/2 = 8/2 = 4 ∈ D
t2 = (40 + 32)/2 = 72/2 = 36 ∉ D
x²+3x-6 = t
x²+3x-6 = 4
x²+3x-10 = 0
Δ = 9 + 40 = 49
√Δ = 7
x1 = (-3 - 7)/2 = -10/2 = -5 ∈ D
x2 = (-3 + 7)/2 = 4/2 = 2 ∈ D
odp. x = -5, x = 2