rozwiąż tożsamość trygonometryczną
ctgx + sinx/(1+cosx) = 1/sinx
L = ctgx + sinx/(1+cos(a)) =
= cosx/sinx + sinx/(1+cosx) =
= [(cosx(1+cosx + sin^2(x)]/[sinx*(1+cosx] =
= [cosx + cos^2(x) + sin^2(x)]/[sinx + sinxcosx] =
= (1+cosx)/(sinx+sinx *cosx) =
= (1+cosx)/[sinx*(1+cosx)] =
= 1/sinx
P = 1/sinx
L = P
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
ctgx + sinx/(1+cosx) = 1/sinx
L = ctgx + sinx/(1+cos(a)) =
= cosx/sinx + sinx/(1+cosx) =
= [(cosx(1+cosx + sin^2(x)]/[sinx*(1+cosx] =
= [cosx + cos^2(x) + sin^2(x)]/[sinx + sinxcosx] =
= (1+cosx)/(sinx+sinx *cosx) =
= (1+cosx)/[sinx*(1+cosx)] =
= 1/sinx
P = 1/sinx
L = P