rozwiąż równanie
x( x³ - 7x + 6 ) = 0
x( x³ - x - 6x + 6) = 0
x[x(x² -1) -6(x-1) = 0
x[x(x-1)x+1) -6(x-1) = 0
x²(x-1)(x+1) -6(x-1) = 0
(x-1)[x²(x+1)-6= 0
(x-1)(x³+x²-6x)
x(x-1)(x²+x-6)= 0
x²+x-6 = 0
Δ=b²-4ac
Δ= 1² -4 * 1 * (-6)
Δ = 25
√Δ = 5
x₁ = - b - √Δ / 2a
x₁ = -1 -5 / 2 = -3
x₂ = -b + √Δ / 2a
x₂ = -1 + 5 / 2 = 2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
x( x³ - 7x + 6 ) = 0
x( x³ - x - 6x + 6) = 0
x[x(x² -1) -6(x-1) = 0
x[x(x-1)x+1) -6(x-1) = 0
x²(x-1)(x+1) -6(x-1) = 0
(x-1)[x²(x+1)-6= 0
(x-1)(x³+x²-6x)
x(x-1)(x²+x-6)= 0
x²+x-6 = 0
Δ=b²-4ac
Δ= 1² -4 * 1 * (-6)
Δ = 25
√Δ = 5
x₁ = - b - √Δ / 2a
x₁ = -1 -5 / 2 = -3
x₂ = -b + √Δ / 2a
x₂ = -1 + 5 / 2 = 2