Rozwiąż równanie x^{3} -6x^{2} -2x+12=0
x^{3} -6x^{2} -2x+12=0
x^{2}(x-6)-2(x-6)=0
(x^{2}-2)(x-6)=0
(x^{2}-2)=0
x^{2}=2
x=\sqrt{2} lub x=-\sqrt{2}
(x-6)=0
x=6
Odp: x=\sqrt{2} x=-\sqrt{2} x=6
x³- 6x²- 2x+ 12= 0
x²(x-6)- 2(x-6)= 0
(x²-2)(x-6)= 0
x²-2= 0 lub x-6=0
x²= 2 lub x= 6
x= √2 lub x= -√2 lub x= 6
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
x^{3} -6x^{2} -2x+12=0
x^{2}(x-6)-2(x-6)=0
(x^{2}-2)(x-6)=0
(x^{2}-2)=0
x^{2}=2
x=\sqrt{2} lub x=-\sqrt{2}
(x-6)=0
x=6
Odp: x=\sqrt{2} x=-\sqrt{2} x=6
x³- 6x²- 2x+ 12= 0
x²(x-6)- 2(x-6)= 0
(x²-2)(x-6)= 0
x²-2= 0 lub x-6=0
x²= 2 lub x= 6
x= √2 lub x= -√2 lub x= 6