Rozwiąż równanie
x^2= pierwiastek z 2* x^5
I. Jeżeli mamy:
x² = √(2x⁵) I()² Z: 2x⁵ ≥0
x⁴ = 2x⁵ x ≥ 0
x⁴-2x⁵ = 0
x⁴(1-2x) = 0
x⁴ = 0 => x = 0
lub
1-2x = 0
-2x = -1 /:(-2)
x = 1/2
Odp. x = 0 v x = 1/2
=====================
II. Jeżeli mamy:
x² = √2·x⁵
x²-√2x⁵ = 0
x²(1-√2x³) = 0
x² = 0 => x = 0
1-2x³ = 0
-2x³ = -1 /:(-2)
x³ = 1/√2 = √(1/2)
x³ = (1/2)¹/² I()∛
x = [(1/2)¹/²]¹/³
x = (1/2)¹/⁶
x = ⁶√(½)
Odp. x = 0 v x = ⁶√(½)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
I. Jeżeli mamy:
x² = √(2x⁵) I()² Z: 2x⁵ ≥0
x⁴ = 2x⁵ x ≥ 0
x⁴-2x⁵ = 0
x⁴(1-2x) = 0
x⁴ = 0 => x = 0
lub
1-2x = 0
-2x = -1 /:(-2)
x = 1/2
Odp. x = 0 v x = 1/2
=====================
II. Jeżeli mamy:
x² = √2·x⁵
x²-√2x⁵ = 0
x²(1-√2x³) = 0
x² = 0 => x = 0
lub
1-2x³ = 0
-2x³ = -1 /:(-2)
x³ = 1/√2 = √(1/2)
x³ = (1/2)¹/² I()∛
x = [(1/2)¹/²]¹/³
x = (1/2)¹/⁶
x = ⁶√(½)
Odp. x = 0 v x = ⁶√(½)
=====================