Rozwiąż równanie 3(x2-4X)-(X2-4X)2+10=0
Zapisz pierwiastki w kolejności rosnącej.
Wskazówka: Wprowadz niewiadomą pomocniczą t=x2-4x
x2-do kwadratu
)2-nawias do kwadratu
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
3(x²-4x)-(x²-4x)²+10 = 0 t = x²-4x
3t-t²+10 = 0
-t²+3t+10 = 0
Δ = 3²-4·(-1)·10 = 9+40 = 49
√Δ = √49 = 7
t₁ = (-3-7)/2·(-1) = (-10)/(-2) = 5
t₂ = (-3+7)/2·(-1) = 4/(-2) = -2
5 = x²-4x ∨ -2 = x²-4x
x²-4x-5 = 0 ∨ x²-4x+2 = 0
Δ = (-4)²-4·1·(-5) = 16+20 = 36 Δ = (-4)²-4·1·2 = 16-8 = 8
√Δ = √36 = 6 √Δ = √8 = 2√2
x₁ = (4-6)/2 = -1 ∨ x₁ = (4-2√2)/2 = 2-√2
x₂ = (4+6)/2 = 5 ∨ x₂ = (4+2√2)/2 = 2+√2
x∈{-1; 2-√2; 2+√2; 5}