Rozwiąż równania
a)
b)
c)
d)
e)
f)
g) log przy podstawie 0,5 x do 2-log przy podstawie 0,5 z x= log przy podstawie 0,5 z 3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
a)
2^(x^2 -x -3) = 0,5
2^(x^2 -x -3) = 2^(-1)
x^2 - x - 3 = -1
x^2 - x - 2 = 0
delta = 1 - 4*1*(-2) = 1 + 8 = 9
p(delty) = 3
x1 = [1 -3]/2 = -2/2 = -1
x2 = [1 +3]/2 = 4/2 = 2
========================
b)
(2^x)^2 - 3* 2^x + 2 = 0
Podstawiamy
y = 2^x
Mamy
y^2 - 3y + 2 = 0
delta = 9 -4*1*2 = 9 - 8 = 1
y1 = [3 -1]/2 = 2/2 = 1
y2 = [3 + 1]/2 = 4/2 = 2
zatem
2^x1 = 1 ---> x1 = 0
2^x2 = 2 ---> x2 = 1
=======================
c)
log4 (log3 (log2 x)] = 0 <=> log3 (log2 x) = 4^0 = 1 <=>
<=> log2 x = 3^1 = 3 <=> x = 2^3 = 8
x = 8
=================================================
d)
log2 (x -1) = 3 <=> x-1 = 2^3 = 8 <=> x = 9
x = 9
=============
e)
log(x+5) + log(x-4) = log(x-3) + log(x +2)
log[(x+5)*(x-4)] = log[(x-3)*(x + 2)]
x^2 -4x +5x - 20 = x^2 +2x - 3x - 6
x - 20 = -x - 6
2x = 20 - 6
2x = 14
x = 7
===============
f)
log5 (x -6) = 3 <=> x -6 = 5^3 = 125 <=> x = 125 + 6 = 131
x = 131
=======
g)
log 0,5 (x^2) - log 0,5 (x) = log 0,5 (3)
log0,5 [(x^2)/ x] = log 0,5 (3)
log 0,5 [x ] = log 0,5 ( 3)
x = 3
======