rozwiąż równania wykładnicze :
3^(3x) * 5^x * 5^(-2) = (3^2)^(x +1)
3^(3x) * 5^x * 1/25 = 3^(2x + 2)
3^(3x) * 5^x * 1/25 = 3^(2x) * 3^2 / : 3^(2x)
3^(3x) * 5^x * 1/25
--------------------------= 9
3^(2x)
3^(3x -2x) * 5^x * 1/25 = 9
3^x * 5^x = 9 * 25
(3 * 5)^x = (3 * 5)^2
x = 2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
3^(3x) * 5^x * 5^(-2) = (3^2)^(x +1)
3^(3x) * 5^x * 1/25 = 3^(2x + 2)
3^(3x) * 5^x * 1/25 = 3^(2x) * 3^2 / : 3^(2x)
3^(3x) * 5^x * 1/25
--------------------------= 9
3^(2x)
3^(3x -2x) * 5^x * 1/25 = 9
3^x * 5^x = 9 * 25
(3 * 5)^x = (3 * 5)^2
x = 2