Rozwiąż równania wielomianowe:
a) x³-10x+9=0
b) 3x⁴-10x³+10x-3=0
a)
x³-10x+9=0
x³ - x - 9x + 9 = 0
x(x² - 1) - 9(x - 1) = 0
x(x - 1)(x + 1) - 9(x - 1) = 0
(x - 1) [ x(x +1) - 9 ] = 0
(x - 1) [ x² + x - 9 ] = 0
x - 1 = 0 lub x² + x - 9 = 0
x = 1 Δ = 1 + 36 = 37
√Δ = √37
x1 = (-1 - √37) / 2
x2 = (-1 + √37) / 2
b)
3x⁴ - 10x³ + 10x - 3 = 0
3x⁴ - 3 - 10x³ + 10x = 0
3(x⁴ - 1) - 10x(x² - 1) = 0
3(x² - 1)(x² + 1) - 10x(x² - 1) = 0
(x² - 1) [ 3(x² + 1) - 10x ] = 0
x² - 1 = 0 lub 3x² + 3 - 10x = 0
x² = 1 3x² - 10x + 3 = 0
x = 1 lub x= -1 Δ = 100 - 36 = 64
√Δ = 8
x1 = (10 - 8)/6 = 2/6 = 1/3
x2 = (10 + 8)/6 = 18/6 = 3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)
x³-10x+9=0
x³ - x - 9x + 9 = 0
x(x² - 1) - 9(x - 1) = 0
x(x - 1)(x + 1) - 9(x - 1) = 0
(x - 1) [ x(x +1) - 9 ] = 0
(x - 1) [ x² + x - 9 ] = 0
x - 1 = 0 lub x² + x - 9 = 0
x = 1 Δ = 1 + 36 = 37
√Δ = √37
x1 = (-1 - √37) / 2
x2 = (-1 + √37) / 2
b)
3x⁴ - 10x³ + 10x - 3 = 0
3x⁴ - 3 - 10x³ + 10x = 0
3(x⁴ - 1) - 10x(x² - 1) = 0
3(x² - 1)(x² + 1) - 10x(x² - 1) = 0
(x² - 1) [ 3(x² + 1) - 10x ] = 0
x² - 1 = 0 lub 3x² + 3 - 10x = 0
x² = 1 3x² - 10x + 3 = 0
x = 1 lub x= -1 Δ = 100 - 36 = 64
√Δ = 8
x1 = (10 - 8)/6 = 2/6 = 1/3
x2 = (10 + 8)/6 = 18/6 = 3