Odpowiedź:
a)
4(2x - 1)² + 1 = (8x + 7)(2x - 5) - 10x
4(4x² - 4x + 1) = 16x² + 14x - 40x - 35 -10x
16x² - 16x + 4 = 16x² - 46x - 35
16x² - 16x² - 16x + 46x = - 35 - 4
30x = - 39
x = - 39/30 = - 1 9/30 = - 1 3/10 =- 1,3
b)
4x² - (2 - √3)² ≤ (2x + 5)² + 4√3
4x² - (4 - 4√3 + 3) ≤ 4x² + 20x +25 + 4√3
4x² - 4 + 4√3 - 3 ≤ 4x² + 20x + 25 + 4√3
4x² - 7 + 4√3 ≤ 4x² + 20x + 25 + 4√3
4x² - 4x² - 20x - 7 - 25 + 4√3 - 4√3 ≤ 0
- 20x - 32 ≤ 0
- 20x ≤ 32
20x ≥ - 32
x ≥ - 32/20
x ≥ - 8/5
x ≥ - 1 3/5
x ≥ - 1,6
x ∈ < - 1,6 ; +∞ )
c)
(2x - 7)/3 ≥ 5 - (2x + 1)/4 | * 12
4(2x - 7) ≥ 5 * 12 - 3(2x +1)
8x - 28 ≥ 60 - 6x - 3
8x + 6x ≥ 57 + 28
14x ≥ 85
x ≥ 85/14
x ≥ 1 1/14
x ∈ < 1 1/14 , + ∞ )
d)
2IxI < 7
IXI < 7/2
IxI < 3,5
x < 3,5 ∧ x > - 3,5
x ∈ ( - 3,5 ; 3,5 )
e)
5IxI = 8
IxI = 8/5 = 1 3/5 = 1,6
x = 1,6 ∨ x = - 1,6
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
a)
4(2x - 1)² + 1 = (8x + 7)(2x - 5) - 10x
4(4x² - 4x + 1) = 16x² + 14x - 40x - 35 -10x
16x² - 16x + 4 = 16x² - 46x - 35
16x² - 16x² - 16x + 46x = - 35 - 4
30x = - 39
x = - 39/30 = - 1 9/30 = - 1 3/10 =- 1,3
b)
4x² - (2 - √3)² ≤ (2x + 5)² + 4√3
4x² - (4 - 4√3 + 3) ≤ 4x² + 20x +25 + 4√3
4x² - 4 + 4√3 - 3 ≤ 4x² + 20x + 25 + 4√3
4x² - 7 + 4√3 ≤ 4x² + 20x + 25 + 4√3
4x² - 4x² - 20x - 7 - 25 + 4√3 - 4√3 ≤ 0
- 20x - 32 ≤ 0
- 20x ≤ 32
20x ≥ - 32
x ≥ - 32/20
x ≥ - 8/5
x ≥ - 1 3/5
x ≥ - 1,6
x ∈ < - 1,6 ; +∞ )
c)
(2x - 7)/3 ≥ 5 - (2x + 1)/4 | * 12
4(2x - 7) ≥ 5 * 12 - 3(2x +1)
8x - 28 ≥ 60 - 6x - 3
8x + 6x ≥ 57 + 28
14x ≥ 85
x ≥ 85/14
x ≥ 1 1/14
x ∈ < 1 1/14 , + ∞ )
d)
2IxI < 7
IXI < 7/2
IxI < 3,5
x < 3,5 ∧ x > - 3,5
x ∈ ( - 3,5 ; 3,5 )
e)
5IxI = 8
IxI = 8/5 = 1 3/5 = 1,6
x = 1,6 ∨ x = - 1,6