" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
- 3x² - 12x + 15 ≤ 0 / : 3
- x² - 4x + 5 ≤ 0
Δ = (- 4)² - 4 * (- 1) * 5 = 16 + 20 = 36
√Δ = √36 = 6
x₁ = (4 - 6)/(- 2) = - 2/- 2 = 1
x₂ = (4 + 2)/(- 2) = 6/-2 = - 3
a < 0 i Δ > 0
x ∈ ( - ∞ , - 3> i <1 , ∞)
b)
2x² + 8x + 8 > 0
Δ = 8² - 4 * 2 * 8 = 64 - 64 = 0
x₁ = x₂ = - b/2a = - 8/2 = - 4
a > 0 i Δ = 0
x ∈ R \ {- 4}
c)
3x² - 18x + 27 ≥ 0 / : 3
x² - 6x + 9 ≥ 0
Δ = (- 6)² - 4 * 1 * 9 = 36 - 36 = 0
x₁ = x₂ = - b/2a = 6/2 = 3
a > 0 i Δ = 0
x ∈ R
d)
- 4x² + 8x - 4 > 0 / : 4
- x² + 2x - 1 > 0
Δ = 2² - 4 * (- 1) * (- 1) = 4 - 4 = 0
x₁ = x₂ = - b/2a = - 2/- 2 = 1
a < 0 i Δ = 0
rozwiązaniem nierówności jest zbiór pusty Q
e)
- 2x² -12x - 18 ≤ 0 / : 2
- x² -6x - 9 ≤ 0
Δ = (- 6)² - 4 * (- 1) * (- 9) = 36 - 36 = 0
x₁ = x₂ = - b/2a = 6/- 2 = - 3
a < 0 i Δ = 0
x ∈ R
f)
2x² + x + 3 > 0
Δ = 1² - 4 * 2 * 3 = 1 - 24 = - 23
a > 0 i Δ < 0
x ∈ R
g)
- x² + 2x - 6 > 0
Δ = 2² - 4 * (- 1) * (- 6) = 4 - 24 = - 20
a < 0 i Δ < 0
rozwiązaniem jest zbiór pusty Q
h)
- (x + 1)² + 2(x -3)² < 17
- x² - 2x - 1 + 2x² - 12x + 18 - 17 < 0
x² - 14x < 0
x(x - 14) < 0
x > 0 i x < 14
x ∈ (0 , 14)
i)
(x + 2)² - 2(x +3)² < - 14
x² + 4x + 4 - 2x² - 12x - 18 + 14 < 0
- x² - 8x < 0 / * - 1
x² + 8x > 0
x(x +8) > 0
x > 0 i x > - 8
x < 0 i x < - 8
x > 0 i x < - 8
x ∈ (- ∞ , - 8 ) i (0 , ∞)
-3x²-12x+15≤0
-3x²-12x+15=0
Δ=144-4*(-3)*15=144+180=324
√Δ=18
x₁=12-18/-6=-6/-6=1
x₂=12+18/-6=-5
(-∞,-5>U <1,∞)
b)
2x²+8x+8>0
2x²+8x+8=0
Δ=64-4*2*8=0
x₀=-8/4=-2
(-∞,-2) U (-2,∞)
c)
3x²-18x+27≥0
3x²-18x+27=0
Δ=324-4*3*27=0
x₀=18/6=3
x∈R
d)
-4x²+8x-4>0
Δ=64-4*(-4)*(-4)=0
x₀=-8/-8=1
x∈(-∞,1) U (1,+∞)
e)
-2x²-12x-18≤0
-2x²-12x-18=0
Δ=144-4*(-2)*(-18)=0
x₀=12/-4=-3
x=-3
f)
2x²+x+3>0
2x²+x+3=0
Δ=1-4*2*3=-23
nie ma rozwiązania x∈ do zbioru pustego
g)
-x²+2x-6≤0
-x²+2x-6=0
Δ=4-4*(-1)*(-6)=4-24=-20
nie ma rozwiązania x ∈Ф (zbioru pustego)
h)
-(x+1)²+2(x-3)²<17
-(x²+2x+1)+2(x²-6x+9)=17
-x²-2x-1+2x²-12x+18=17
x²-14x=0
x(x-14)=0
x=0 v x-14=0
x=14
ramiona paraboli skierowane do góry
x∈(0,14)
i)
(x+2)²-2(x+3)²<-14
x²+4x+4-2(x²+6x+9)=-14
x²+4x+4-2x²-12x-18=-14
-x²-8x-14=-14
-x²-8x=0
-x(x+8)=0
x=0 v x+8=0
x=-8