rozwiąż dwa równania: 1. (2 cosx-1) * (2 cosx+1) = 3 ||| 2. 3sin^2x - cos^2x = 1
1.
(2 cosx-1) * (2 cosx+1) = 3
4cos²x - 1 = 3
4cos²x = 4 /:4
cos²x = 1
cosx = 1 lub cosx =-1
x1 = 0 + 2kπ x3 = π + 2kπ
x2 = 2π + 2kπ
odp. x = kπ gdzie k ∈ C
2.
3sin^2x - cos^2x = 1
3sin²x - (1 - sin²x) = 1
3sin²x - 1 + sin²x = 1
4sin²x = 2 /:4
sin²x = 1/2
sinx = √2/2 lub sinx = -√2/2
x1 = π/4 + 2kπ x3 = (π + π/4) + 2kπ = 5π/4 + 2kπ
x2 = (π - π/4) + 2kπ = 3π/4 + 2kπ x4 = (2π - π/4) + 2kπ = 7π/4 + 2kπ gdzie k ∈ C
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
1.
(2 cosx-1) * (2 cosx+1) = 3
4cos²x - 1 = 3
4cos²x = 4 /:4
cos²x = 1
cosx = 1 lub cosx =-1
x1 = 0 + 2kπ x3 = π + 2kπ
x2 = 2π + 2kπ
odp. x = kπ gdzie k ∈ C
2.
3sin^2x - cos^2x = 1
3sin²x - (1 - sin²x) = 1
3sin²x - 1 + sin²x = 1
4sin²x = 2 /:4
sin²x = 1/2
sinx = √2/2 lub sinx = -√2/2
x1 = π/4 + 2kπ x3 = (π + π/4) + 2kπ = 5π/4 + 2kπ
x2 = (π - π/4) + 2kπ = 3π/4 + 2kπ x4 = (2π - π/4) + 2kπ = 7π/4 + 2kπ gdzie k ∈ C