" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
|x² +4x +3| ≤ -x +3
x² +4x +3 = 0
D = b² - 4ac = 4² - 4·1·3 = 16 - 12 = 4
x₁ = (-4 - √4)/2·1 = -4 - 22 = -62 = -3
x₂ = (-4 + √4)/2·1 = -4 + 22 = -22 = -1
x² +4x +3 = (x+3)(x+1)
|(x+3)(x+1)| ≤ -x +3
x² +4x +3 = -x +3
x² +5x = 0
x(x+5) = 0
x₄ = 0
x₅ =-5
x ∈ (-∞;-5)∪[-5;-3]∪(-3;-1]∪(-1;0]∪(0;3]∪(3;+∞)
sprawdzimy:
1.
x∈(-∞;-5)
przykładowo x = -6∈(-∞;-5)
|(-6+3)(-6+1)| ≤ 6 +3
15 ≤ 9 nie pasuje ! => x∉(-∞;-5)
2.
x∈[-5;-3]
przykładowo x = -4∈[-5;-3]
|(-4+3)(-4+1)| ≤ 4 +3
3 < 7 pasuje ! => x∈[-5;-3]
3.
x∈(-3;-1]
przykładowo x = -2∈(-3;-1]
|(-2+3)(-2+1)| ≤ 2 +3
1 < 5 pasuje ! => x∈(-3;-1]
4.
x∈(-1;0]
przykładowo x =-0,5∈(-1;0]
|(-0,5+3)(-0,5+1)| ≤ 0,5 +3
1,25 < 3,5 pasuje !! => x∈(-1;0]
5.
x∈(0;3]
przykładowo x = 1∈(0;3]
|(1+3)(1+1)| ≤ -1 +3
3 ≤ 2 nie pasuje ! => x∉(0;3]
6.
x∈(3;+∞)
przykładowo x = 4∈(3;+∞)
|(4+3)(4+1)| ≤ -4 +3
35 ≤ -1 nie pasuje ! => x∉(3;+∞)
|x² +4x +3| ≤ -x +3 dla: x∈[-5;-3]∪(-3;-1]∪(-1;0] => x∈[ -5; 0 ]
graficznie:
= { x² +4x +3 x∈ (-∞;-5)
y₁ = |x² +4x +3| = {-(x² +4x +3) x∈ [5; 0]
= { x² +4x +3 x∈ (0; +∞)
y₂ = -x +3 x∈ (-∞;+∞)
y₁(-5) = y₂(-5) = 8
y₁ (0) = y₂(0) = 3
|x² +4x +3| ≤ -x +3 dla: x∈[ -5; 0 ]
☟☟☟☟☟☟☟☟☟