równanie z parametrem
(m^2-4)x+m-2=0
(m^2-4)x = -(m - 2) / : (m^2 - 4) gdzie m ≠ 2 i m ≠ - 2
x = -(m - 2) / (m^2 - 4)
x = -(m - 2) / (m - 2)(m + 2)
x = - 1/ (m + 2)
(m²-4)x+m-2 = 0
x(m+2)(m-2) = -(m-2) /:(m-2), m≠2, m≠-2
x(m+2) = -1 /:(m+2)
x = -1/(m+2)
==========
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
(m^2-4)x+m-2=0
(m^2-4)x = -(m - 2) / : (m^2 - 4) gdzie m ≠ 2 i m ≠ - 2
x = -(m - 2) / (m^2 - 4)
x = -(m - 2) / (m - 2)(m + 2)
x = - 1/ (m + 2)
(m²-4)x+m-2 = 0
x(m+2)(m-2) = -(m-2) /:(m-2), m≠2, m≠-2
x(m+2) = -1 /:(m+2)
x = -1/(m+2)
==========