równanie (;
|x-1| + 3x = x² + 2
założenie
x∈<1;+∞)
x-1+3x=x²+2
x²-4x+3=0
Δ=16-12=4
x=(4±2)÷2 ⇔ x=3 ∨ x=1
x∈(-∞;1)
-x+1+3x=x²+2
x²-2x+1
Δ=4-4=0
x=2÷2=1
odp. x=3 ∨ x=1
|x-1|=x²+2-3x
x-1=x²+2-3x
x²-x-3x+3=0
x(x-1)-3(x-1)=0
(x-3)(x-1)=0
x=3 ∨ x=1
x-1=-(x²+2-3x)
x-1=-x²-2+3x
-x²+2x-1=0
-x²+x+x-1=0
-x(x-1)+1(x-1)=0
-(x-1)(x-1)=0
x=1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
założenie
x∈<1;+∞)
x-1+3x=x²+2
x²-4x+3=0
Δ=16-12=4
x=(4±2)÷2 ⇔ x=3 ∨ x=1
założenie
x∈(-∞;1)
-x+1+3x=x²+2
x²-2x+1
Δ=4-4=0
x=2÷2=1
odp. x=3 ∨ x=1
|x-1| + 3x = x² + 2
|x-1|=x²+2-3x
x-1=x²+2-3x
x²-4x+3=0
x²-x-3x+3=0
x(x-1)-3(x-1)=0
(x-3)(x-1)=0
x=3 ∨ x=1
x-1=-(x²+2-3x)
x-1=-x²-2+3x
-x²+2x-1=0
-x²+x+x-1=0
-x(x-1)+1(x-1)=0
-(x-1)(x-1)=0
x=1
x=3 ∨ x=1