" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
d)
log₄(logv₂ (log₃x²)=log₄2 , x≠0 ,
logv₂(log₃x²)=2
log₃x² = (√2)²
log₃ x² = 2
log₃x²=log₃3²
x²=9
x²-9=0
(x+3)(x-3)=0
x=-3 v x=3.
14.
a)
log₀,₃(log₅(x²+1))=log₀,₃(0,3)⁰
log₅(x²+1)=1
x²+1=5
x²-4=0
(x+2)(x-2)=0
x=-2 v x=2
b)
log₃(log₃(log₃x))=log₃1 , x>0
log₃(log₃x)=log₃3
log₃x=3
x=3³
x=27
c)
log₃(log₃(log₃(x²-9)))=log₃1 , x²-9>0 ⇒ (x+3)(x-3)>0, D=(-∞,-3)u(3,+∞)
log₃(log₃(x²-9))=1
log₃(log₃(x²-9))=log₃3
log₃(x²-9)=3
x²-9=3³
x²-9-27=0
x²-36=0
(x+6)(x-6)=0
x=-6 v x=6