a)
Mamy tu ciąg geometryczny
a1 = 100 [mg]
q = 1 -0,025 = 0,975
po 10 latach jest jeszcze
a10 = a1 *q⁹ =100* (0,975)⁹ ≈ 79,62 [mg]
po 20 latach
a20 =a1 *q¹⁹ = 100*(0,975)¹⁹ ≈ 61,81 [mg]
po 30 latach
a30 = a1 *q²⁹ =100* (0,975)²⁹ ≈ 47,99 [mg]
po 50 latach
a50 =a1 *q⁴⁹ = 100* (0,975)⁴⁹ ≈ 28,92 [mg]
------------------------------------------
b)
an = 25 [mg]
an = a1*q^(n-1)
q^(n-1) = an/a1
qⁿ = q *an/a1
n = log{q} (q*an/a1)
n = log (q*an/a1) / log q
n = [log (q) + log (an) - log (a1)] / log (q)
n = [log 0,975 +log 25 -log100] / log 0,975
n ≈ 55,76
n musi być liczbą naturalną ( zaokrąglamy w dół)
n = 55 [lat]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
a)
Mamy tu ciąg geometryczny
a1 = 100 [mg]
q = 1 -0,025 = 0,975
po 10 latach jest jeszcze
a10 = a1 *q⁹ =100* (0,975)⁹ ≈ 79,62 [mg]
po 20 latach
a20 =a1 *q¹⁹ = 100*(0,975)¹⁹ ≈ 61,81 [mg]
po 30 latach
a30 = a1 *q²⁹ =100* (0,975)²⁹ ≈ 47,99 [mg]
po 50 latach
a50 =a1 *q⁴⁹ = 100* (0,975)⁴⁹ ≈ 28,92 [mg]
------------------------------------------
b)
an = 25 [mg]
an = a1*q^(n-1)
q^(n-1) = an/a1
qⁿ = q *an/a1
n = log{q} (q*an/a1)
n = log (q*an/a1) / log q
n = [log (q) + log (an) - log (a1)] / log (q)
n = [log 0,975 +log 25 -log100] / log 0,975
n ≈ 55,76
n musi być liczbą naturalną ( zaokrąglamy w dół)
n = 55 [lat]