rea de una región poligonal en el plano cartesiano
Sea A1 , A2 , A3 , ........, An un polígono de “n” lados cuyos vértices nombrados en sentido
antihorario, tiene como coordenadas : ,,,........,
Entonces el área de la región poligonal correspondiente, es el valor absoluto de la expresión :
.....(1)
Llamada también formula determinante de Gauss
Obsérvese en la determinante se repite , al final, el primer par ordenado correspondiente
a la coordenada de .
La forma de resolver esta determinante es la siguiente:
I D
De donde :
Luego el valor de la determinante estará dada por :
....(2)
Por lo tanto sustituyendo (2) en (1) :
....(3)
Notas :
a) La elección del primer vértice en el polígono es completamente arbitrario.
b) La expresión (3) es aplicable inclusive a figuras no convexas (cóncavas)
Ejercicio de aplicación :
Hallar el área de la región pentagonal cuyos vértices son: , ,
y
Solución:
Hacemos un gráfico aproximado :
Elijamos como primer vértice al par ordenado luego:
Luego de acuerdo al par anterior los otros puntos ,teniendo en cuenta el sentido antihorario serán:
Reemplazando estos valores en (1) :
Resolvamos la determinante de acuerdo a la teoría :
Luego los valores de D y de I respectivamente serán:
Finalmente sustituyendo estos valores en (3) , el área de dicha región será :
Por lo tanto :
Calculo del área de un triángulo dado por sus coordenadas. , ,
Haciendo un gráfico:
Reemplazando estos valores en (1):
Resolvamos la determinante de acuerdo a lo expuesto anteriormente :
Calcular el área de una región hexagonal no convexa (cóncava) cuyos vértices son:
,,,,,.
Al igual que en los demás casos dibujemos un gráfico aproximado del hexágono no convexo
Elijamos como primer par ordenado luego:
bueno espero que este bien la respuesta porque yo nosi tan buena en matematicas
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
rea de una región poligonal en el plano cartesiano
Sea A1 , A2 , A3 , ........, An un polígono de “n” lados cuyos vértices nombrados en sentido
antihorario, tiene como coordenadas :
,
,
,........,
Entonces el área de la región poligonal
correspondiente, es el valor absoluto de la expresión :
.....(1)
Llamada también formula determinante de Gauss
Obsérvese en la determinante se repite , al final, el primer par ordenado
correspondiente
a la coordenada de
.
La forma de resolver esta determinante es la siguiente:
I D
De donde :
Luego el valor de la determinante estará dada por :
....(2)
Por lo tanto sustituyendo (2) en (1) :
....(3)
Notas :
a) La elección del primer vértice en el polígono es completamente arbitrario.
b) La expresión (3) es aplicable inclusive a figuras no convexas (cóncavas)
Ejercicio de aplicación :
Hallar el área de la región pentagonal cuyos vértices son:
,
,
y
Solución:
Hacemos un gráfico aproximado :
Elijamos como primer vértice al par ordenado
luego:
Luego de acuerdo al par anterior los otros puntos ,teniendo en cuenta el sentido antihorario serán:
Reemplazando estos valores en (1) :
Resolvamos la determinante de acuerdo a la teoría :
I D
Luego los valores de D y de I respectivamente serán:
Finalmente sustituyendo estos valores en (3) , el área de dicha región será :
Por lo tanto :
Calculo del área de un triángulo dado por sus coordenadas.
,
,
Haciendo un gráfico:
Elijamos como primer vértice al par ordenado
luego:
Luego de acuerdo al par anterior los otros puntos ,teniendo en cuenta el sentido antihorario serán:
Reemplazando estos valores en (1):
Resolvamos la determinante de acuerdo a lo expuesto anteriormente :
I D
Luego los valores de D y de I respectivamente serán:
Finalmente sustituyendo estos valores en (3) , el área de dicha región será :
Por lo tanto :
Calcular el área de una región hexagonal no convexa (cóncava) cuyos vértices son:
,
,
,
,
,
.
Al igual que en los demás casos dibujemos un gráfico aproximado del hexágono no convexo
Elijamos como primer par ordenado
luego:
Luego de acuerdo al par anterior los otros puntos ,teniendo en cuenta el sentido antihorario serán:
bueno espero que este bien la respuesta porque yo nosi tan buena en matematicas